Abstract:
Various semiconductor chip package substrates with reinforcement and methods of making the same are disclosed. In one aspect, a method of manufacturing is provided that includes providing a package substrate that has a first side and a second side opposite to the first side. The first side has a central area adapted to receive a semiconductor chip. A solder reinforcement structure is formed on the first side of the package substrate outside of the central area to resist bending of the package substrate.
Abstract:
A method of manufacturing a substrate for use in electronic packaging having a core, m buildup layers on a first surface of the core and n buildup layers on a second surface of the core, where m ≠ n is disclosed. The method includes forming (m-n) of the m buildup layers on the first surface, and then forming n pairs of buildup layers, with each one of the pairs including one of the n buildup layers formed on the second surface and one of the remaining n of the m buildup layers formed on the first surface. Each buildup layer includes a dielectric layer and a conductive layer formed thereon. The disclosed method protects the dielectric layer in each of buildup layers from becoming overdesmeared during substrate manufacturing by avoiding repeated desmearing of dielectric materials.
Abstract:
Various circuit boards and methods of manufacturing the same are disclosed. In one aspect, a method of manufacturing is provided that includes forming a solder mask (75) on a circuit board (20) with a first opening (220) that has a sidewall. A solder interconnect pad (65) is formed in the first opening. The sidewall sets the lateral extent of the solder interconnect pad.
Abstract:
Various circuit boards and methods of manufacturing using the same are disclosed. In one aspect, a method of manufacturing is provided that includes applying a solder mask (90) to a side (17) of a circuit board (20) and forming at least one opening (105) in the solder mask (90) leading to the side (17). An underfill (25) is placed on the solder mask (90) so that a portion (100) thereof projects into the at least one opening (105).
Abstract:
A routing layer for a semiconductor die is disclosed. The routing layer includes traces interconnecting integrated circuit bond-pads to UBMs. The routing layer is formed on a layer of dielectric material. The routing layer includes conductive traces arranged underneath the UBMs as to absorb stress from solder bumps attached to the UMBs. Traces beneath the UBMs protect parts of the underlying dielectric material proximate the solder bumps, from the stress.
Abstract:
Various semiconductor chip conductor structures and methods of fabricating the same are provided. In one aspect, a method of manufacturing is provided that includes forming a conductor structure on a semiconductor chip. The conductor structure has a first site electrically connected to a first redistribution layer structure and a second site electrically connected to a second redistribution layer structure. A solder structure is formed on the conductor structure.
Abstract:
Various circuit boards and methods of making the same are disclosed. In one aspect, a method of manufacturing is provided that includes applying a solder mask to a first side of a first circuit board. The first side of the first circuit board includes a first conductor structure and a second conductor structure. A first opening is formed in the solder mask that extends to the first conductor structure. The first opening has a first area. A second opening is formed in the solder mask that extends to the second conductor structure and has a second area larger than the first area.
Abstract:
A routing layer for a semiconductor die is disclosed. The routing layer includes pads for attaching solder bumps; bond-pads bonded to bump-pads of a die having an integrated circuit, and traces interconnecting bond-pads to pads. The routing layer is formed on a layer of dielectric material. The routing layer includes conductive traces at least partially surrounding some pads so as to absorb stress from solder bumps attached to the pads. Parts of the traces that surround pads protect parts of the underlying dielectric material proximate the solder bumps, from the stress.
Abstract:
A method of packaging a plurality of semiconductor chips comprises: providing a substrate panel having a first coefficient of thermal expansion (CTE); providing a carrier having a second CTE that is less than the first CTE; heating the substrate panel and the carrier to first and second elevated temperatures respectively; mounting the substrate panel at about the first elevated temperature to the carrier, the carrier being at said second elevated temperature, to provide a connection between the carrier and the substrate panel; and cooling the carrier and the substrate panel from the first and second elevated temperatures thereby putting the substrate panel into tension in at least one direction. A stiffener panel may be affixed to the substrate panel and heated to an elevated temperature and while the substrate panel is heated to an elevated temperature. A plurality of dies may be mounted and electrically connected to the substrate panel. Under-filling of the plurality of dies may occur with the stiffener panel affixed to the substrate panel.