Abstract:
Arsenic impurities are removed from anhydrous hydrogen fluoride by treating the hydrogen fluoride with elemental chlorine and anhydrous hydrogen chloride or a fluoride salt or both and then separating the purified anhydrous hydrogen fluoride, preferably by distillation, from the nonvolatile arsenic compounds.
Abstract:
A process for the preparation of alkane- and arenesulfonamides in high purity and yield is provided. Ammonia or alkylamine is reacted under boiling conditions with an alkane- or arenesulfonyl halide in the absence of an added solvent. The heat of reaction is dissipated by the heat of vaporization of the ammonia or alkylamine.
Abstract:
A continuous method is provided for preparing alkanesulfonyl halides, particularly chlorides and alkanesulfonic acids in high yields without the formation of undesirable side-products, and without the net production of hydrogen chloride as a by-product. The method involves the continuous electrolysis of an alkanethiol (RSH) or dialkyl disulfide (RSSR′) in an aqueous hydrochloric acid-containing solution, continuously removing the electrolyzed product mixture from the electrolysis zone, and recovering the alkanesulfonyl chloride (RSO₂Cl) or alkanesulfonic acid (RSO₃H) product from the mixture. The alkyl groups in the dialkyl disulfide (R and R′) may be straight or branched chain, substituted or unsubstituted, have 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, and may be different, but are preferably the same. The aqueous hydrochloric acid-containing medium and any unreacted sulphur compounds may be recycled through the electrolysis chamber.
Abstract:
The process for preparing aliphatic and aromatic amines by reacting an olefin with either ammonia, a primary amine, or a secondary amine at elevated temperature in the presence of an ammonium halide catalyst, preferably a catalyst-promoter combination, is disclosed herein.