Abstract:
In an embodiment, a system on a chip (SOC) may include one or more central processing units (CPUs), a memory controller, and a circuit configured to remain powered on when the rest of the SOC is powered down. The circuit may be configured to receive audio samples and match those audio samples against a predetermined pattern. The circuit may operate according to a first clock during the time that the rest of the SOC is powered down. In response to detecting the predetermined pattern in the samples, the circuit may cause the memory controller and processors to power up. During the power up process, a second clock having one or more better characteristics than the first clock may become available. The circuit may switch to the second clock while preserving the samples, or losing at most one sample, or no more than a threshold number of samples.
Abstract:
A system, apparatus, and method for routing traffic in a SoC from I/O devices to memory. A coherence switch routes coherent traffic through a coherency port on a processor complex to a real-time port of a memory controller. The coherence switch routes non-coherent traffic to a non-real time port of the memory controller. The coherence switch can also dynamically switch traffic between the two paths. The routing of traffic can be configured via a configuration register, and while software can initiate an update to the configuration register, the actual coherence switch hardware will implement the update. Software can write to a software-writeable copy of the configuration register to initiate an update to the flow path to memory for a transaction identifier. The coherence switch detects the update to the software-writeable copy, and then the coherence switch updates the working copy of the configuration register and implements the new routing.
Abstract:
A context switching method for video encoders that enables higher priority video streams to interrupt lower priority video streams. A high priority frame may be received for processing while another frame is being processed. The pipeline may be signaled to perform a context stop for the current frame. The pipeline stops processing the current frame at an appropriate place, and propagates the stop through the stages of the pipeline and to a transcoder through DMA. The stopping location is recorded. The video encoder may then process the higher-priority frame. When done, a context restart is performed and the pipeline resumes processing the lower-priority frame beginning at the recorded location. The transcoder may process data for the interrupted frame while the higher-priority frame is being processed in the pipeline, and similarly the pipeline may begin processing the lower-priority frame after the context restart while the transcoder completes processing the higher-priority frame.
Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture, but may capture the still frames in the 4x3 aspect ratio and at higher resolution than the 16x9 aspect ratio video frames. The device may interleave high resolution, 4x3 frames and lower resolution 16x9 frames in the video sequence, and may capture the nearest higher resolution, 4x3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16x9 frames in the video sequence, and then expand to 4x3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16x9 video frames responsive to a release of the shutter button.
Abstract:
A method and apparatus for changing a frequency of a clock signal to avoid interference is disclosed. In one embodiment, data conveyed on a first interface is synchronized to a clock signal at a first frequency. Signals are conveyed on a second interface at another frequency. Responsive to a change of the frequency at which signals are conveyed on a second interface, a clock control unit associated with the first interface initiates a change of the clock signal to a second frequency. The second frequency may be chosen as to not cause interference with the frequency at which signals are conveyed on the second interface. The change of the clock frequency may be performed in such a manner as to prevent spurious activity on the clock line of the interface.
Abstract:
In an embodiment, a control circuit is configured to transmit operations to a circuit block that is being powered up after being powered down, to reinitialize the circuit block for operation. The operations may be stored in a memory (e.g. a set of registers) to which the control circuit is coupled. In an embodiment, the control circuit may also be configured to transmit other operations from the memory to the circuit block prior to the circuit block being powered down. Accordingly, the circuit block may be powered up or powered down even during times that the processors in the system are powered down (and thus software is not executable at the time), without waking the processors for the power up/power down event. In an embodiment, the circuit block may be a cache coupled to the one or more processors.
Abstract:
An embodiment of a system may include a plurality of media units, a processor, and circuitry. Each media unit may be configured to execute one or more commands to process a display image. The processor may be configured to store a plurality of media processing commands in a queue. The circuitry may be configured to retrieve a first media processing command from the queue and send the first media processing command to a first media unit. The circuitry may also be configured to retrieve a second media processing from the queue and send the second media processing command to a second media unit in response to receiving an interrupt from the first media unit. The circuitry may then copy data from the first media unit to the second media unit in response to receiving the interrupt from the first media unit.
Abstract:
Embodiments of a method that allow the adjustment of performance settings of a computing system are disclosed. One or more functional units may include multiple monitor circuits, each of which may be configured to monitor a given operational parameter of a corresponding functional unit. Upon detection of an event related to a monitored operational parameter, a monitor circuit may generate an interrupt. In response to the interrupt a processor may adjust one or more performance settings of the computing system.
Abstract:
Systems and methods for coordinating performance parameters in multiple domains are described. In an embodiment, a method includes receiving a request to change a state of an electronic circuit, where the circuit includes a first domain and a second domain, causing a first parameter of a first circuit serving the first domain to be modified to a first modified parameter based on the request, and causing a second parameter of a second circuit serving the second domain to be modified to a second modified parameter based on the request. In some cases, a parameter may include a clock frequency. In other cases, a parameter may include a voltage. In some embodiments, a system may be implemented as a logic circuit and/or as a system-on-a-chip (SoC). Devices suitable for using these systems include, for example, desktop and laptop computers, tablets, network appliances, mobile phones, personal digital assistants, e-book readers, televisions, and game consoles.
Abstract:
In an embodiment, a non-transparent memory unit is provided which includes a non-transparent memory and a control circuit. The control circuit may manage the non-transparent memory as a set of non-transparent memory blocks. Software executing on one or more processors may request a non-transparent memory block in which to process data. The control circuit may allocate a first block, and may return an address (or other indication) of the allocated block so that the software can access the block. The control circuit may also provide automatic data movement between the non-transparent memory and a main memory system to which the non-transparent memory unit is coupled. For example, the automatic data movement may include filling data from the main memory system to the allocated block, or flushing the data in the allocated block to the main memory system after the processing of the allocated block is complete.