Abstract:
Provided are exhaust systems and components suitable for use in conjunction with gasoline engines to capture particulates in addition to reducing gaseous emission such as hydrocarbons, nitrogen oxides, and carbon monoxides. Exhaust treatment systems comprising a three-way conversion (TWC) catalyst located on a particulate filters are provided. Coated particle filters having washcoat loadings in the range of 1 to 4 g/ft result in minimal impact on back pressure while simultaneously providing TWC catalytic activity and particle trapping functionality to meet increasingly stringent regulations such as Euro 6, Sufficient to high levels of oxygen storage components (OSC) are also delivered on and/or within the filter. The filters can have a coated porosity that is substantially the same as its uncoated porosity. The TWC catalytic material can comprise a particle size distribution such that a first set of particles has a first d90 particle size of 7.5 µ?? or less and a second set of particles has a second d90 particle size of more than 7.5 µ??. Methods of making and using the same are also provided.
Abstract:
Provided herein is a barium sulfate-containing catalyst carrier. The catalyst carrier is useful for supporting an exhaust gas purification catalyst, such as a three way conversion catalyst. In an embodiment, the carrier comprises BaSO4/thermally stable alumina. Further provided is a process for preparing the catalyst carrier, with or without precious metals, comprising treating a barium oxide/alumina or barium carbonate/alumina with a stoichiometric amount of sulfuric acid (H2SO4), thus forming BaSO4/alumina in situ in good yield and at low cost.
Abstract:
The present invention provides for novel poisoning-resistant catalysts used for automobile exhaust gas treatment systems. To alleviate the detrimental affects of engine oil and/or fuel additive poisoning the present invention provides for an overcoat layer comprising a porous refractory oxide and one or more base metal oxides, which is coated over one or more precious metal containing washcoat layers. The overcoat of the present invention prevents phosphorous as well as other poisoning deposits, from fouling and/or negatively interacting with the underlying precious metal containing washcoats. In an alternative embodiment, the present invention provides for the coating of the upstream end of a catalytic member by the overcoat layer, thereby creating an upstream poison capture zone. A method for treating automobile exhaust gas using the poisoning-resistant catalysts is also provided.
Abstract:
Provided is a composite of mixed metal oxides comprising by weight of the composite: alumina in an amount in the range of 1 to 50%; ceria in an amount in the range of 1 to 50% zirconia in an amount in the range of 10 to 70%; and one or more oxides of Group II elements in an amount in the range of 1 to 10%; optionally, one or more oxides Group III elements in an amount in the range of 0 to 20% is present. The mixed metal oxides may be effective integrated supports for precious metals used in emissions catalysts where a single component is an integration of alumina, ceria, zirconia, Group III metal oxides (dopants, e.g., La2O3, Y2O3, Nd2O3, Pr6O11), Group II metal oxides (additives, e.g., BaO, SrO, CaO, MgO), and optionally other transition metal oxides.
Abstract:
Catalytic materials, and in particular, rhodium-containing catalytic materials for exhaust gas purifying catalyst composites are provided herein. Such materials comprise multimetallic Rh-containing nanoparticles, which are present primarily inside aggregated particles of a support (such as alumina). Such catalytic materials can exhibit excellent conversion of hydrocarbons and nitrogen oxides.
Abstract:
An emissions treatment system for an exhaust stream of an internal combustion engine including hydrocarbons, carbon monoxide, and nitrogen oxides is provided. The disclosed system can include an exhaust conduit in fluid communication with the internal combustion engine via an exhaust manifold; a first three-way conversion catalyst (TWC-1) located downstream of the internal combustion engine in the exhaust conduit; an SCR-HCT catalyst comprising a selective catalytic reduction catalyst and a hydrocarbon trap downstream of the TWC-1 in the exhaust conduit; and a third catalyst downstream of the SCR-HCT combination in the exhaust conduit, the third catalyst comprising a platinum group metal (PGM) e.g., in an amount effective to oxidize hydrocarbons. Methods of making and using such systems and components thereof are also provided.
Abstract:
Provided are composites of mixed metal oxides comprising: a ceria-zirconia-alumina composite, wherein the alumina is present in an amount in the range of 1 to less than 30% by weight of the composite and the mixed metal oxide composite has a ceria reducibility of at least 50% after 12 hours of hydrothermal aging at 1050° C. In preparation thereof, a ceria-zirconia solid solution can optionally further comprise at least one rare earth oxide other than ceria and the alumina may be formed by using a colloidal alumina precursor. Methods of making and using these composites are also provided.
Abstract:
Provided are catalyst composites whose catalytic material is effective to substantially simultaneously oxidize carbon monoxide and hydrocarbons and reduce nitrogen oxides. The catalyst composites have a two-metal layer on a carrier, the two-metal layer comprising a rhodium component supported by a first support comprising a refractory metal oxide component or a first ceria-zirconia composite; a palladium component supported by a second support comprising a second ceria-zirconia composite; one or more of a promoter, stabilizer, or binder; wherein the amount of the total of the first and second ceria-zirconia composites in the two-metal layer is equal to or greater than the amount of the refractory metal oxide component. Methods of making and using the same are also provided.