Abstract:
The invention relates to a softener composition containing at least one tetrahydrofurane derivative and at least one 1,2-cyclohexane dicarboxylic acid ester, molding compounds which contain a thermoplastic polymer or an elastomer and said type of softener composition, and to the use of said softener compositions and molding compounds.
Abstract:
Method for producing solutions which comprise 5-hydroxymethylfurfural (HMF) and have a reduced content of starting materials of the HMF synthesis or a reduced content of by-products of the HMF synthesis (hereinbelow called product solution), which comprises treating solutions which comprise HMF starting materials or by-products of the HMF synthesis and an organic solvent having at least two ether groups (for short polyether) (hereinbelow called starting solution) in an evaporator with steam.
Abstract:
Method for producing 5-hydroxymethylfurfural (HMF), wherein a) solutions (hereinbelow called starting solution) which comprise a hexose and an organic solvent with a boiling point greater than 200° C. (at standard pressure) (for short called high-boiling component), and steam are fed to a reaction vessel, b) in the reaction vessel, a conversion of the hexose to HMF takes place in the presence of steam with the simultaneous distillative removal of the HMF and c) as distillate, an aqueous, HMF-comprising solution (hereinbelow called distillate) is obtained.
Abstract:
The invention relates to a process for L-Iditol by hydrogenating L-Sorbose. Further, the invention also relates to a use of a transition metal complex as hydrogenation catalyst for L-Sorbose. The invention relates to a process for the preparation of L-Iditol comprising at least one reaction step, in which a composition comprising L-Sorbose and hydrogen is reacted in the presence of a transition metal catalyst complex in a homogeneous solution, wherein the transition metal catalyst complex comprises at least one chiral ligand containing at least one phosphorus atom, which is capable of coordinating to the transition metal, and wherein the transition metal is selected from metals of groups 8, 9 and 10 of the periodic table of the elements according to IUPAC. The invention further relates to a use of a transition metal complex as defined above and below as hydrogenation catalyst for compositions comprising L-Iditol or mixtures thereof.
Abstract:
A process is described for the preparation of 5-hydroxymethylfurfural (HMF), which comprises the following steps: provision or preparation of a starting mixture, comprising one, two or more starting compounds selected from the group consisting of hexoses, oligosaccharides comprising hexose units, and polysaccharides comprising hexose units, one, two or more organic salts with a melting point 200° C. at 1013.25 hPa, optionally additionally one or more catalysts for the conversion of the one starting compound or at least one of the two or more starting compounds to 5-hydroxymethylfurfural (HMF), optionally water, optionally further substances, adjustment of reaction conditions such that an amount of the starting compound or starting compounds converts to HMF.
Abstract:
Described are oligo- and polysaccharides containing amine groups. Specifically, described is a new process to manufacture cationic cellulose oligomers. The new cationic oligo- or polysaccharides are useful ingredients in various aqueous compositions, inter alia as ingredients for personal care compositions.
Abstract:
Disclosed herein is a process for depolymerization of lignin including thermally converting an aqueous mixture having a pH of at least 9 including lignin, catalyst and primary alcohol in a non-oxidizing atmosphere at a temperature of at least 280° C.
Abstract:
The present invention relates to a process for preparing cyclohexane by isomerizing a hydrocarbon mixture (HM1) comprising methylcyclopentane (MCP) in the presence of a catalyst. The catalyst is preferably an acidic ionic liquid. The starting material used is a stream (S1) which originates from a steamcracking process. The hydrocarbon mixture (HM1) obtained from this stream (S1) in an apparatus for aromatics removal has a reduced aromatics content compared to stream (S1), and (HM1) may optionally also be (virtually) free of aromatics. Depending on the type and amount of the aromatics remaining in the hydrocarbon mixture (HM1), especially in the case that benzene is present, the isomerization may additionally be preceded by performance of a hydrogenation of (HM1). In addition, depending on the presence of other components of (HM1), further purification steps may optionally be performed prior to or after the isomerization or hydrogenation. High-purity (on-spec) cyclohexane is preferably isolated from the hydrocarbon mixture (HM2) obtained in the isomerization, the specifications being, for example, those applicable to the use of the cyclohexane for the preparation, known to those skilled in the art, of caprolactam.
Abstract:
A process for preparing 5-hydroxymethylfurfural (HMF), which comprises a) feeding solutions (hereinafter called starting solution) comprising one or more saccharides and an organic solvent having a boiling point greater than 200° C. (at standard pressure) (called high boiler for short) and water, and a solvent having a boiling point greater than 60° C. and less than 200° C. (at standard pressure, called low boiler for short) to a reaction vessel, b) effecting a conversion of hexose to HMF in the reaction vessel in the presence of water vapor with simultaneous distillative removal of the HMF and c) obtaining, as the distillate, an aqueous, HMF-comprising solution (hereinafter called distillate).
Abstract:
A process for preparing sebacic acid by reacting in a first step (i) linoleic acid with water catalyzed by an oleate hydratase to form 10-hydroxy-12-octadecenoic acid, in a second step (ii) pyrolysing the 10-hydroxy-12-octadecenoic acid to 1-octene and 10-oxo-decanoic acid and in a third step (iii) oxidizing the 10-oxo-decanoic acid to sebacic acid.