Abstract:
The present invention relates to a catalyst for the conversion of oxygenates to olefins, the catalyst containing one or more zeolites of an MFI-, MEL- and/or MWW-type structure and particles of one or more metal oxides, wherein the one or more zeolites of the MFI-, MEL- and/or MWW-type structure contain one or more alkaline earth metals, and the particles of the one or more metal oxides contain phosphorus, the phosphorus being at least partially present as an oxide, and the one or more alkaline earth metals being selected from the group consisting of Mg, Ca, Sr, Ba and combinations of two or more of these elements. The invention also relates to the production and use of said catalyst and to a method for the conversion of oxygenates to olefins using the catalyst.
Abstract:
The present invention relates to a process for the preparation of a pillared silicate compound comprising a layered silicate structure and bridging silicon atoms located between adjacent silicate layers of the silicate structure, wherein said bridging silicon atoms form at least one covalent bond to each of the adjacent silicate layers, said process comprising (1) providing one or more layered silicates; (2) adding said one or more layered silicates to a solvent system, wherein the resulting mixture has a pH of 5 or less; and (3) subjecting the mixture obtained in step (2) to solvothermal conditions; wherein no silicon-containing compound according to formula (I) R4-mSi[-(SiR2)n-R]m (I) is used at any point of the process up to and including step (3), wherein m is 1, 2, 3, or 4, and n is an integer greater than or equal to 0, wherein when n is equal to 0, one or more residues R are leaving groups, and wherein none of the residues R contains Si, as well as to a pillared silicate compound per se, preferably as obtained and/or obtainable according to the inventive process as well as to the use of the inventive compounds. A further process is disclosed wherein a sulfur oxoacid is present in step (2), and wherein a silicon-containing compound may or may not be used.
Abstract:
A process for the post-treatment of a zeolitic material having a BEA framework structure, the process comprising (i) providing a zeolitic material having a BEA framework structure, wherein the framework structure of the zeolitic material comprises X203 and Y02, wherein Y is a tetravalent element and X is a trivalent element and wherein the molar ratio X203 : Y02 is greater than 0.02 : 1; (ii) treating the zeolitic material provided in (i) with a liquid solvent system thereby obtaining a zeolitic material having a molar ratio X203 : Y02 of at most 0.02 : 1, and at least partially separating the zeolitic material from the liquid solvent system; (iii) treating the zeolitic material obtained from (ii) with a liquid aqueous system having a pH in the range of 5.5 to 8 and a temperature of at least 75 ?C.
Abstract:
The present invention relates to a catalyst for the conversion of oxygenates to olefins, the catalyst containing one or more zeolites of an MFI-, MEL- and/or MWW-type structure and particles of one or more metal oxides, wherein the one or more zeolites of the MFI-, MEL- and/or MWW-type structure contain one or more alkaline earth metals, and the particles of the one or more metal oxides contain phosphorus, the phosphorus being at least partially present as an oxide, and the one or more alkaline earth metals being selected from the group consisting of Mg, Ca, Sr, Ba and combinations of two or more of these elements. The invention also relates to the production and use of said catalyst and to a method for the conversion of oxygenates to olefins using the catalyst.
Abstract:
The invention relates to a catalyst and catalyst layer and process for preparing dimethyl ether from synthesis gas or methanol as well as the use of the catalyst or catalyst layer in this process.
Abstract:
The present invention relates to a catalyst for the conversion of oxygenates to olefins, wherein the catalyst comprises one or more zeolites of the MFI, MEL and/or MWW structure type and particles of one or more metal oxides, the one or more zeolites of the MFI, MEL and/or MWW structure type comprising one or more alkaline earth metals selected from the group consisting of Mg, Ca, Sr, Ba and combinations of two or more thereof, wherein the catalyst displays a water uptake of 9.0 wt.-% or less, as well as to a process for the production thereof and to its use, in particular in a process for converting oxygenates to olefins.
Abstract:
The present invention relates to a catalyst for the conversion of oxygenates to olefins, wherein the catalyst comprises one or more zeolites of the MFI, MEL and/or MWW structure type and particles of one or more metal oxides, the one or more zeolites of the MFI, MEL and/or MWW structure type comprising one or more alkaline earth metals selected from the group consisting of Mg, Ca, Sr, Ba and combinations of two or more thereof, wherein the catalyst displays a water uptake of 9.0 wt.-% or less, as well as to a process for the production thereof and to its use, in particular in a process for converting oxygenates to olefins.
Abstract:
The present invention relates to an improved process for exchanging alkali metal or alkaline earth metal ions in zeolites for ammonium ions. For this exchange aqueous solutions of ammo nium salts for example ammonium sulfate ammonium nitrate or ammonium chloride are cur rently being used. The resulting 'ammonium zeolites' are calcined to convert them with release of ammonia to the H form of the zeolites suitable as a catalyst. It is proposed in accordance with the invention to use ammonium carbonate instead of the am monium compounds mentioned. Since excess ammonium carbonate in contrast to the nitrates sulfates or chlorides can be recycled in the form of carbon dioxide and ammonia the amount of salt which has to be discharged is lowered significantly.