Abstract:
A resin composition, comprising (a) at least one epoxy resin, and (b) at least one siloxane-type curing agent of formula C22 or C31 (C22) (C31) wherein the resin composition does essentially not contain any fluoride or bromide.
Abstract:
Die vorliegende Erfindung betrifft Partikel, die mit einem Modifikator modifiziert wurden und ein Dispersionsmittel enthaltend die modifizierten Partikel. Die oberflächenmodifizierten Metall-, Metallhalogenid-, Metallchalkogenid-, Metallnitrid-, Metallphosphid-, Metallborid- oder Metallphosphatpartikel oder Mischungen derselben, weisen einen mittleren Partikeldurchmesser von 1 bis 500 nm auf und deren Oberfläche wurde mit einem oder mehreren Modifikatoren der Formel (I), (II) und (III) modifiziert.
Abstract:
The present invention relates to an electromagnetic millimetre wave absorber material, preferably having a volume resistivity of more than 1 Ωcm, containing solid particles having an aspect ratio (length:diameter) of at least 5 of a first electrically conductive material, particles having an aspect ratio (length:diameter) of less than 5 of a second electrically conductive material and an electrically non-conductive polymer, wherein the absorber material is preferably capable of absorbing electromagnetic waves in a frequency region of 60 GHz to 200 GHz and wherein the electromagnetic millimetre wave absorber material comprises based on the total amount of the absorber material from 30 wt.-% to 93 wt.-% of the electrically non-conductive polymer, from 6.5 wt.-% to 10 wt.-% of the first electrically conductive material, from 0.5 wt.-% to 0.9 wt.-% of the second electrically conductive material, and from 0 wt.-% to 59.1 wt.-% of one or more additives. The invention also relates to its use and method for absorbing as well as a sensor apparatus comprising said absorber material.
Abstract:
A field effect element comprising: a source electrode (6) and a drain-electrode (7), a semiconducting layer (2) comprising a semiconducting compound being in contact with the source electrode (6) and the drain electrode (7), - a gate electrode (5), and a dielectric layer (3) comprising one or more compounds selected from hygroscopic organic compounds and/or from nanoparticulate inorganic compounds being arranged between the semiconducting layer (2) and the gate electrode (5), wherein said hygroscopic organic compounds have a water absorption capability of more than 1.2 % by weight, and a hydrophobic insulating layer (4) being arranged between the gate electrode (5) and the dielectric layer (3) preventing diffusion of water into the one or more hygroscopic compounds of the dielectric layer during the time of use of the field effect element, said hydrophobic insulating layer (4) having a water absorption capability of less than 1.2 % by weight, the semiconducting layer (2), the dielectric layer (3) or the hydrophobic insulating layer (4), or a combination thereof, being disposable from a liquid; and a process for producting the same.
Abstract:
A composition comprising a monomer of the general formula (M1) wherein M is a metal or semimetal of main group 3 or 4 of the periodic table; X M1 , X M2 are each O; R M1 , R M2 are the same or different and are each an -CR a R b -Ar-O-R c ; Ar is a C 6 to C 30 carbocyclic ring system; R a , R b are the same or different and are each H or C 1 to C 6 alkyl; R c is C 1 -C 22 -alkyl, benzyl or phenyl; q according to the valency and charge of M is 0 or 1; X M3 , X M4 are the same or different and are each O, C 6 to C 10 aryl, or -CH 2- ; R M3 , R M4 are the same or different and are each R M1 , H, C 1 -C 22 alkyl, or a polymer selected from a polyalkylene, a polysiloxane, or a polyether.
Abstract:
The present invention relates to an electromagnetic millimetre wave absorber material, preferably having a volume resistivity of more than 1 Ωcm, containing solid particles having an aspect ratio (length:diameter) of at least 5 of a first electrically conductive material, particles having an aspect ratio (length:diameter) of less than 5 of a second electrically conductive material and an electrically non-conductive polymer, wherein the absorber material is capable of absorbing electromagnetic waves in a frequency region of 60 GHz or more. The invention also relates to its use and method for absorbing as well as a sensor apparatus comprising said absorber material.
Abstract:
The present invention is directed to a composition comprising a polyurethane being the reaction product of a polyisocyanate, a polyol C1 and a polyol C2, a chain extender, eventually in the presence of a catalyst, eventually the compositon comprising auxiliaries, wherein the polyol C polysiloxane.
Abstract:
Es wird ein Verfahren zum Erkennen von Ablagerungen in einem Rohrsystem eines Apparats vorgeschlagen, wobei der Apparat von einem Fluid durchströmt wird. Bei dem Verfahren ist vorgesehen, dass mindestens eine Mikrowellensonde in das Rohrsystem derart eingebracht wird, dass ein für Mikrowellenstrahlung transparentes Fenster (102) der Mikrowellensonde von dem Fluid angeströmt wird, und dass über die mindestens eine Mikrowellensonde Mikrowellen in das Rohrsystem eingekoppelt werden, wobei eine Reflexionsmessung mit einer oder zwei Mikrowellensonden durchgeführt wird, und/oder mindestens zwei Mikrowellensonden voneinander beabstandet in das Rohrsystem eingebracht werden und eine Transmissionsmessung durchgeführt wird, wobei aus einem Vergleich von Messdaten mit einer Referenz oder einer vorherigen Messung auf eine Verengung im Rohrsystemabschnitt geschlossen wird und der freie Querschnitt an der Verengung bestimmt wird, wobei aus dem Erkennen einer Verengung auf das Vorhandensein von Ablagerungen geschlossen wird. Weitere Aspekte der Erfindung betreffen eine Mikrowellensonde zum Einkoppeln von Mikrowellenstrahlung in das Rohrsystem eines Apparats und eine Messvorrichtung zur Durchführung des Verfahrens, die zumindest eine derartige Mikrowellensonde umfasst.
Abstract:
The present invention relates to a process for the preparation of nanoporous carbon foams, comprising at least the following steps(a) preparation of a nanoporous nitrogen comprising resin foam,(b) heating the foam of step (a) to a first temperature of 200 to 650 °C using a heating rate of 1 to 10 °C/min, and holding this first temperature for 1 to 6 hours,(c) further heating the foam of step (b) to a second temperature of 650 to 1400 °C using a heating rate of 1 to 10°C/min, and holding this second temperature for 1 to 4 hours to obtain the nanoporous carbon foam, to a nanoporous carbon foam, obtainable with this process, and to the use of this nanoporous carbon foam in applications of energy storage, adsorption, water desalination, IR absorber additive or catalysis.