Abstract:
The invention relates to a tube bundle reactor having a flat feed dome. Alternatively, the discharge dome can also be designed flat. The flat design reduces the reaction heat developing in the hood in reaction types that take place not only in the tube bundle (non-catalyzed reactions and reactions with homogenously distributed catalyst). Undesired reactions that already take place in the dome due to accumulated heat are thus heavily suppressed, whereby greater selectivity in temperature-sensitive reactions is achieved. Additionally, the temperature distribution within the domes can be precisely controlled. The tube bundle reactor comprises a tube bundle that has a feed end connected to a feed dome of the tube bundle reactor, wherein the feed dome is designed in a flat shape having a cross-sectional surface at the feed end and an inner volume, and the ratio of the inner volume to the cross-sectional surface is less than 0.35 m. The invention is furthermore implemented by a method for operating a tube bundle reactor, comprising: introducing a reactant mixture into a tube bundle and converting at least a portion of the reactant mixture into a product inside the tube bundle. The introduction step comprises: feeding the reactant mixture into an inner space of a feed dome of the tube bundle reactor and forwarding the reactant mixture into a feed end of the tube bundle in the form of a fluid flow. The fluid flow has a cross-sectional surface upon entering the feed end and the inner space of the feed dome through which the fluid flows has an inner volume; wherein the ratio of the inner volume to the cross-sectional surface is less than 0.35 m.
Abstract:
The invention relates to a method for producing 4-pentenoic acid, at least comprising the oxidation of a mixture (G) containing 4-pentenal, 3-methyl-2-butanone and cyclopentene oxide and to the use of a mixture (G) containing 4-pentenal, 3-methyl-2-butanone and cyclopentene oxide for producing 4-pentenoic acid. The invention also relates to the mixture (G) which is obtained as an auxiliary product from the oxidation of cyclopentene to cyclopentanone by means of dinitrogen monoxide.
Abstract:
The invention relates to a method for the trimerisation of butadiene to form cyclododecatriene by continuously feeding butadiene into a main reactor volume, for producing a reaction mixture in the main reactor volume which comprises non-converted butadiene and cyclododecatriene, and for providing isothermic conditions in the main reactor volume by tempering the reaction mixture. Said method also continuously the following steps: the reaction mixture produced in the main reactor volume is continuously guided into a post-reactor volume and converts at least one part of the non-converted butadiene in the post-reactor volume into cyclododecatriene. Said reaction mixture provided in the post reactor volume is essentially in adiabatic equilibrium. The invention also relates to a reactor arrangement for carrying out said method comprising a main reactor and a secondary reactor. Subsequently, in accordance with the inventive method, the temperature difference is detected for determining the butadiene concentration in the main reactor and for monitoring the operation or the method.
Abstract:
The invention relates to a method for producing formic acid, comprising the following steps: (a) reacting, in a homogeneously catalyzed manner, a reaction mixture (Rg) containing carbon dioxide, hydrogen, at least one polar solvent selected from the group comprising methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, and water, and at least one tertiary amine of general formula (A1) NR1R2R3, in which R1, R2, and R3 represent independently of one another an unbranched or branched, acyclic or cyclic, aliphatic, araliphatic, or aromatic group having 1 to 16 carbon atoms, wherein individual carbon atoms can also be substituted independently of one another with a hetero group selected from the groups -O- and >N- and two or all three residues can also be bonded to one another to from a chain comprising at least four atoms, in the presence of at least one coordination catalyst, which contains at least one element selected from groups 8, 9, and 10 of the periodic system, in a hydrogenation reactor in order to obtain, optionally after adding water, a two-phase hydrogenation mixture (H) containing an upper phase (O1), which contains the at least one coordination catalyst and the at least one tertiary amine (A1), and a lower phase (U1), which contains the at least one polar solvent, residues of the at least one coordination catalyst, and at least one formic acid/amine adduct of general formula (A2), NR1R2R3 * xi HCOOH, in which xi is in the range of 0.4 to 5 and R1, R2, R3 have the meanings stated above; (b) processing the hydrogenation mixture (H) obtained in step (a) according to one of the following steps: (b1) phase-separating the hydrogenation mixture (H) obtained in step (a) in a first phase-separating device into the upper phase (O1) and the lower phase (U1), or (b2) extracting the at least one coordination catalyst from the hydrogenation mixture (H) obtained in step (a) in an extraction unit with an extracting agent containing the at least one tertiary amine (A1) in order to obtain a raffinate (R1) containing the at least one formic acid/amine adduct (A2) and the at least one polar solvent and an extract (E1) containing the at least one tertiary amine (A1) and the at least one coordination catalyst, or (b3) phase-separating the hydrogenation mixture (H) obtained in step (a) in a first phase-separating device into the upper phase (O1) and the lower phase (U1) and extracting the residues of the at least one coordination catalyst from the lower phase (U1) in an extraction unit by means of an extracting agent containing the at least one tertiary amine (A1) in order to obtain a raffinate (R2) containing the at least one formic acid/amine adduct (A2) and the at least one polar solvent and an extract (E2) containing the at least one tertiary amine (A1) and the residues of the at least one coordination catalyst; (c) separating the at least one polar solvent from the lower phase (U1), from the raffinate (R1), or from the raffinate (R2) in a first distillation device in order to obtain a distillate (D1) containing the at least one polar solvent, which is fed back into the hydrogenation reactor in step (a), and a two-phase bottom mixture (S1) containing an upper phase (O2), which contains the at least one tertiary amine (A1), and a lower phase (U2), which contains the at least one formic acid/amine adduct (A2); (d) optionally processing the bottom mixture (S1) obtained in step (c) by phase separation in a second phase-separating device into the upper phase (O2) and the lower phase (U2); (e) cleaving the at least one formic acid/amine adduct (A2) contained in the bottom mixture (S1) or optionally in the lower phase (U2) in a thermal cleaving unit in order to obtain the at least one tertiary amine (A1), which is fed back to the hydrogenation reactor in step (a), and formic acid, which is discharged from the thermal cleaving unit, wherein carbon monoxide is added to the lower phase (U1), the raffinate (R1), or the raffinate (R2) directly before and/or during step (c) and/or carbon monoxide is added to the bottom mixture (S1) or optionally the bottom phase (U2) directly before and/or during step (e).
Abstract:
The present invention relates to a process for preparing at least one monocyclic ketone having 4 to 20 carbon atoms by reacting a mixture G1 comprising at least one monocyclic olefin having 4 to 20 carbon atoms with a mixture G2 comprising at least dinitrogen monoxide, this reaction being carried out adiabatically.
Abstract:
The invention relates to a method for the distillative processing of a raw product containing cyclododecatriene obtained through the method of trimerization of butadiene, said method used for the extraction of the corresponding cyclododecatriene pure product. The distillative processing is carried out in either a dividing wall column in which a dividing wall is provided in the longitudinal direction of the column, forming an upper common column area, a lower common column area, a feed section with a reinforcing part and a down-thrust part and a withdrawal section with a down-thrust part and a reinforcing part, the raw product containing the cyclododecatriene being fed in the middle area of the feed section, a high-boiling fraction being drawn off from the column sump, a low-boiling fraction being drawn off of the column top and a mid-boiling fraction being drawn off of the middle area of the withdrawal section, or is carried out in thermally coupled columns.
Abstract:
Die Erfindung betrifft ein Verfahren zur kombinierten Herstellung von mindestens zwei Zielprodukten ausgewählt aus der Gruppe bestehend aus (Z1), (Z2), (Z3) und (Z4) mit (Z1) Ameisensäure, (Z2) Methylformiat, (Z3) Formamidverbindung der allgemeinen Formel (Ib) H-(C=O)-NR4R5 (Ib)in der R4, R5 unabhängig voneinander Wasserstoff, unsubstituiertes oder zumindest monosubstituiertes C1-C15-Alkyl, C5-C10-Cycloalkyl, C5-C10-Heterocyclyl, C5-C10-Aryl oder C5-C10-Heteroaryl sind, wobei die Substituenten ausgewählt sind aus der Gruppe bestehend aus C1-C15-Alkyl, C5-C10-Cycloalkyl und C5-C10-Aryl oder R4 und R5 zusammen mit dem Stickstoffatom einen fünf- oder sechsgliedrigen Ring bilden, der gegebenenfalls zusätzlich ein oder mehrere Heteroatome ausgewählt aus O, S und N enthält, das den Substituenten R6 trägt, wobei R6 Wasserstoff oder C1-C6-Alkyl ist; und (Z4) Metallformiat ausgewählt aus der Gruppe bestehend aus Natriumformiat, Kaliumformiat, Magnesiumformiat, Calciumformiat und Aluminiumformiat, umfassend die Schritte (a) Bereitstellung eines Ameisensäure-Amin-Addukts der allgemeinen Formel (A2), NR1R2R3*xiHCOOH(A2),in der xi im Bereich von 0,4 bis 5 liegt und R1, R2, R3 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Pentyl, Hexyl, Heptyl und Oktyl, (b) jeweils teilweise Umsetzung des Ameisensäure-Amin-Addukts (A2) gemäß mindestens zwei der Schritte ausgewählt aus der Gruppe bestehend aus (A), (B), (C) und (D) mit (A) thermische Spaltung des Ameisensäure-Amin-Addukts (A2) in einer thermischen Spalteinheit zum Zielprodukt (Z1) und dem entsprechenden tertiären Amin der allgemeinen Formel (A1), NR1R2R3 (A1)in der R1, R2, R3 die vorstehend genannten Bedeutungen haben, (B) Umsetzung des Ameisensäure-Amin-Addukts (A2) mit Methanol in einer Reaktivdestillationskolonne zum Zielprodukt (Z2), Wasser und dem entsprechenden tertiären Amin (A1), (C) Umsetzung des Ameisensäure-Amin-Addukts (A2) mit einem Amin der allgemeinen Formel (Ia) ...
Abstract:
Procedimiento para la preparación de por lo menos un compuesto cíclico con Z ciclos y 7 a 16 átomos de C con un grupo ceto, que comprende por lo menos las etapas de: (a1) oxidación de una composición (A), que contiene por lo menos una olefina cíclica con Z ciclos y 7 a 16 átomos de C y por lo menos dos enlaces C-C dobles, por medio de monóxido de dinitrógeno para obtener una composición (A1), que contiene por lo menos - el por lo menos un compuesto cíclico con Z ciclos y 7 a 16 átomos de C con un grupo ceto, - por lo menos un compuesto cíclico con Z ciclos y 7 a 16 átomos de C con por lo menos dos grupos ceto, - la por lo menos una olefina cíclica con Z ciclos y 7 a 16 átomos de C con por lo menos dos enlaces C-C dobles y - por lo menos un compuesto con Z-1 ciclos y 7 a 16 átomos de C con por lo menos un grupo aldehído, (a2) separación de la por lo menos una olefina cíclica con Z ciclos y 7 a 16 átomos de C con por lo menos dos enlaces C-C dobles de la composición (A1) de la etapa (a1), para obtener una composición (A2) que contiene por lo menos - el por lo menos un compuesto cíclico con Z ciclos y 7 a 16 átomos de C con un grupo ceto, - por lo menos un compuesto cíclico con Z ciclos y 7 a 16 átomos de C con por lo menos dos grupos ceto y - por lo menos un compuesto con Z-1 ciclos y 7 a 16 átomos de C con por lo menos un grupo aldehído, y (b) tratamiento por destilación de la composición (A2) de la etapa (a2), para obtener una composición (B) que contiene - el por lo menos un compuesto cíclico con Z ciclos y 7 a 16 átomos de C con un grupo ceto, - menos de 0,5 % en peso del por lo menos un compuesto cíclico con Z ciclos y 7 a 16 átomos de C con por lo menos dos grupos ceto y - menos de 1,0 % en peso del por lo menos un compuesto con Z-1 ciclos y 7 a 16 átomos de C con por lo menos un grupo aldehído, en el que a la etapa (b) sigue por lo menos la siguiente etapa (c): (c) hidrogenación de la composición (B) en presencia de por lo menos un catalizador, para obtener una composición (C), o a la etapa (b) sigue por lo menos la siguiente etapa (d): (d) tratamiento de la composición (B) con al menos una base, para obtener una composición (D), y a la etapa (d) sigue por lo menos la siguiente etapa (c'): (c') hidrogenación de la composición (D) en presencia de por lo menos un catalizador, para obtener una composición (C'), caracterizado porque la por lo menos una olefina cíclica con Z ciclos y 7 a 16 átomos de C y por lo menos dos enlaces C-C dobles es elegida de entre el grupo consistente en 1,5-ciclooctadieno, 1,5- ciclododecadieno, 1,9-ciclohexadecadieno, 1,8-ciclotetradecadieno, 1,6-ciclododecadieno, 1,6,11- ciclopentadecatrieno, 1,5,9-ciclododecatrieno, vinilciclohexeno, norbornadieno, etilidennorborneno y mezclas de ellos.