Abstract:
Membranes and methods for making membranes are disclosed. The membranes (10) include a polymeric matrix (16) and a particulate material immobilized within the matrix. The membrane may further include a skin layer (19) having randomly spaced surface pores (21). The membranes may find particular application in methods and apparatus for removing organic compounds from a biological fluid as part of a pathogen inactivation treatment.
Abstract:
An intravenous ("IV") liquid delivery system includes: an IV pump tubing set; a shuttle pump or membrane pump actuator operable with the IV pump tubing set; upstream and downstream valve actuators operable with the IV pump tubing set; the IV pump tubing set including an air removal device; an air detector configured to sense air in the IV pump tubing set; a control unit configured and arranged to (i) open the upstream valve actuator and close the downstream valve actuator to allow the pump actuator to draw liquid into a pump actuation portion of the IV pump tubing set, and (ii) close the upstream valve actuator and open the downstream valve actuator to allow the pump actuator to push liquid out of the pump actuation portion, the system configured to attempt to remove the air via the air removal device while operating the upstream and downstream valve actuators according to (i) and (ii).
Abstract:
A priming indicator for a fluid infusion system includes a luer cap (20) or other component of the infusion system having an indicator surface (22) covered by a membrane (24). The membrane exhibits a first visual characteristic, such as being opaque, when dry and exhibits a second characteristic, such as becoming less opaque, when wet. Once the membrane becomes wet, indicia on the surface, which may be provided on a rod at least partially covered by the membrane, becomes visible, thereby indicating an intravenous tube to which the luer cap is secured has been primed or is nearly primed. The indicator may alternately be employed at an upstream end of an infusion set, such as at the port of a medical bag providing a supply of fluid, to indicate a low level of fluid in the medical bag.
Abstract:
An intravenous ("IV") liquid delivery system includes: an IV pump tubing set; a shuttle pump or membrane pump actuator operable with the IV pump tubing set; upstream and downstream valve actuators operable with the IV pump tubing set; the IV pump tubing set including an air removal device; an air detector configured to sense air in the IV pump tubing set; a control unit configured and arranged to (i) open the upstream valve actuator and close the downstream valve actuator to allow the pump actuator to draw liquid into a pump actuation portion of the IV pump tubing set, and (ii) close the upstream valve actuator and open the downstream valve actuator to allow the pump actuator to push liquid out of the pump actuation portion, the system configured to attempt to remove the air via the air removal device while operating the upstream and downstream valve actuators according to (i) and (ii).
Abstract:
The present invention relates to a process for preparing submicron sized nanoparticles of a poorly water soluble compound by sonicating to evaporate a portion of the organic phase or by lyophilizing a dispersion or microdispersion of a multiphase system having an organic phase and an aqueous phase, the organic phase havingthe poorly water soluble organic compound therein. The method is preferably used to prepare nanoparticles of a poorly water soluble, pharmaceutically active compound suitable for in vivo delivery, particularly by parenteral routes.
Abstract:
A methodology quantifies the average fiber diameter in complex multiple fiber matrixes in media region (28, 30 and 32) of a filter and assembly (20), even when the diameter of one or more of the fibers cannot be physically ascertained by conventional measurement methods.
Abstract:
Membranes and methods for making membranes are disclosed. The membranes (10) include a polymeric matrix (16) and a particulate material immobilized within the matrix. The membrane may further include a skin layer (19) having randomly spaced surface pores (21). The membranes may find particular application in methods and apparatus for removing organic compounds from a biological fluid as part of a pathogen inactivation treatment.
Abstract:
A method and apparatus for filtering suspensions of medical and biological fluids, one aspect of which is separating a suspension comprising at least two types of particles which are differently sized or shaped and in which the first type of particle may be deformable at a relatively lower force and/or faster rate than the second type of particle. A filter member is provided having substantially precisely dimensioned pore sizes, with the pores being dimensioned to allow passage of the first type of suspended particle without distortion or only minimal distortion and passage of the second type of particle only with substantial distortion. Because the filter membrane has precisely dimensioned pores, with spacing between the pores being maintained despite the smaller interval between the pores, the porosity of the membrane may be much greater than nominal pore size membranes, allowing faster filtration rates and/or smaller membranes for a given filtration rate, while reducing the exposure time of the cells within the shear environment, and consequently reducing particle damage. Various methods for preventing clogging of the membrane are also disclosed.
Abstract:
A method correlates average fiber diameter with performance for a complex filtration media comprising a matrix of fibers having a fibrillated component with a diameter so small (e.g., less than 0.01 microns), that cannot be physically measured with accuracy. The method manufactures a selected matrix, derives the number average diameter of the fibers according to prescribed steps, some of which do not require actual physical measurements, and observes a performance characteristic. The method repeats the foregoing steps for different matrixes, yielding different number average diameters. The method expresses change in the selected performance characteristic as a function of change in number average diameter of the matrices.