Abstract:
Methods for controlling the growth of bacteria in ethanol fermentation systems with antibiotic alternatives, which can be nonoxidizing biocides, stabilized oxidizers, or any combinations thereof, are described. As an option, a process or composition of the present invention can include one or more polycyclic antibacterial peptides. The methods can provide improvements, such as increased ethanol yields with minimal carryover of biocide into co-products of the processes.
Abstract:
5'- substituted, 4', 5'- dihydropsoralen compounds (5) bearing tertiary amines (and salts thereof), quaternary ammonium moieties or organomercurial moieties are described. Also described are 2- substituted mercurimethyl -2-3- dihydro -benzofurans of formula (7). Also reported are versatile direct syntheses through a hitherto unknown compounds such as 3-R-4, 8-dimethyl -4',5'-dihydro -5'-bromomethylpsoralen or a 3-R-4, 8-dimethyl-4, 5'-dihydro- 5'-iodomethylpsoralen to prepare a structurally diverse array of partially reduced psoralens and benzofurans. The presence of a permanent ammonium charge in these psoralens precludes membrane passage and the mono-unsaturation precludes the cross linking of nuclear DNA, thereby minimizing the mutagenic/carcinogenic side effects long associated with psoralen-derived therapies. The presence of a mercury functionality provides a reactive cell-binding group on these psoralens with unique cytotoxicity without light activation and an enhancement of cytotoxicity activity upon light activation. The invention also relates to these partially reduced and quaternized psoralens, amino-substituted psoralens, and mercurio psoralens display impressive pharmacology against PAM 212 keratinocytes, a model cell line employed as a test system to indicate epidermal cytotoxicity and cancer. The compounds of the invention also have antimicrobicidal activity useful in pharmacologic agents for mammals (e.g. the treatment of tuberculosis) as well as in controlling the growth of microorganisms on substrates and in aqueous systems.
Abstract:
The present invention provides a method of treating an aqueous system for biocide control, by adding an acidified solution that includes monoalkyldithiocarbamate salt and alkyl isothiocyanate to an aqueous system. A biocide feed system is also provided that is configured to generate a reproducible level of alkyl isothiocyanate. The method and system provide effective levels of alkyl isothiocyanate for rapid biocidal activity, along with levels of monoalkyldithiocarbamate salt which can decompose to form additional alkyl isothiocyanate and provide longer-term biocidal activity.
Abstract:
A method of controlling an exothermic or endothermic chemical reaction is provided. The method involves measuring a temperature of a first reactant flowing at a first flow rate, contacting the first reactant with a second reactant flowing at a second flow rate to form a reaction product, measuring the temperature of the reaction product, and determining the temperature difference between the temperature of the first reactant and the temperature of the reaction product. The method can further involve adjusting the flow rate of at least one of the first reactant and the second reactant, or shutting down flow, based on the temperature difference. An apparatus to carry out the method is also provided. The method and apparatus can be useful in controlling many different reactions, including the reaction of sodium hypochlorite and ammonia to form monochloramine.
Abstract:
A method is provided for measuring an electrolytically-active species concentration in an aqueous or non-aqueous solution for use in providing control of the concentration of the species in a source solution thereof based on the measurements. In the method, a sample containing an electrolytically-active species is added into a measurement cell that has a working electrode and an auxiliary electrode, and a constant current is applied to the measurement cell while the working and auxiliary electrodes are in contact with the sample with monitoring of voltage difference across the electrodes until a change in the voltage difference is detected. A feedback signal is generated based on a parameter of the change in the voltage difference that is directly proportional to the amount of the electrolytically-active species in the sample, which can be used for process control. An apparatus is also described.
Abstract:
Methods for controlling the growth of bacteria in ethanol fermentation systems with antibiotic alternatives, namely stabilized oxidizers optionally in combination with nonoxidizing biocides, are described. The methods can provide improvements, such as increased ethanol yields with minimal carryover of biocide into co-products of the processes.
Abstract:
Microbicidal aqueous solutions including (a) monochloramine and (b) at least one peracid, are described. Components (a) and (b) can be present in an effective amount to control the growth of at least one microorganism and the aqueous solution is at a pH of from about 5 to about 12. Methods for controlling the growth of microorganisms are also disclosed.
Abstract:
Microbicidal aqueous solutions including (a) monochloramine and (b) at least one peracid, are described. Components (a) and (b) can be present in an effective amount to control the growth of at least one microorganism and the aqueous solution is at a pH of from about 5 to about 12. Methods for controlling the growth of microorganisms are also disclosed.
Abstract:
The compositions and methods for control of microbial growth, for example, in oil and gas field fluids. The present invention also relates to microbicides, and more particularly, to the use of biocides in gas and oil field fluids.
Abstract:
A method of controlling an exothermic or endothermic chemical reaction is provided. The method involves measuring a temperature of a first reactant flowing at a first flow rate, contacting the first reactant with a second reactant flowing at a second flow rate to form a reaction product, measuring the temperature of the reaction product, and determining the temperature difference between the temperature of the first reactant and the temperature of the reaction product. The method can further involve adjusting the flow rate of at least one of the first reactant and the second reactant, or shutting down flow, based on the temperature difference. An apparatus to carry out the method is also provided. The method and apparatus can be useful in controlling many different reactions, including the reaction of sodium hypochlorite and ammonia to form monochloramine.