Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.
Abstract:
Using basic physical arguments, a design and method for the fabrication of microfluidic valves using multilayer soft lithography is presented. Embodiments of valves in accordance with the present invention feature elastomer membrane portions of substantially constant thickness, allowing the membranes to experience similar resistance to an applied pressure across their entire width. Such on-off valves fabricated with upwardly- or downwardly-deflectable membranes can have extremely low actuation pressures, and can be used to implement active functions such as pumps and mixers in integrated microfluidic chips. Valve performance was characterized by measuring both the actuation pressure and flow resistance over a wide range of design parameters, and comparing them to both finite element simulations and alternative valve geometries.
Abstract:
The invention provides devices and methods for surface patterning the substrate of a microfluidic device, and for detection and analysis of interactions between molecules by mechanically trapping a molecular complex while substantially expelling solvent and unbound solute molecules. Examples of molecular complexes include protein-protein complexes and protein-nucleic acid complexes.
Abstract:
The invention provides a microfluidic device having a plurality of chambers each containing separately deposited reagents. The invention also provides an efficient PCR-based method for producing a linear expression template. The invention also provides methods for analyzing interactions between molecules, involving flow-deposition of expression templates on the substrate of chambers in a microfluidic device, and expressing proteins from the templates.
Abstract:
Using basic physical arguments, a design and method for the fabrication of microfluidic valves using multilayer soft lithography is presented. Embodiments of valves in accordance with the present invention feature elastomer membrane portions of substantially constant thickness, allowing the membranes to experience similar resistance to an applied pressure across their entire width. Such on-off valves fabricated with upwardly- or downwardly-deflectable membranes can have extremely low actuation pressures, and can be used to implement active functions such as pumps and mixers in integrated microfluidic chips. Valve performance was characterized by measuring both the actuation pressure and flow resistance over a wide range of design parameters, and comparing them to both finite element simulations and alternative valve geometries.
Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example devices for isolating elements of heterogeous samples.
Abstract:
Using basic physical arguments, a design and method for the fabrication of microfluidic valves using multilayer soft lithography is presented. Embodiments of valves in accordance with the present invention feature elastomer membrane portions of substantially constant thickness, allowing th e membranes to experience similar resistance to an applied pressure across the ir entire width. Such on-off valves fabricated with upwardly- or downwardly- deflectable membranes can have extremely low actuation pressures, and can be used to implement active functions such as pumps and mixers in integrated microfluidic chips. Valve performance was characterized by measuring both th e actuation pressure and flow resistance over a wide range of design parameter s, and comparing them to both finite element simulations and alternative valve geometries.
Abstract:
MICROFLUIDIC LARGE SCALE INTEGRATION Using basic physical arguments, a design and method for the fabrication of microfluidic valves using multilayer soft lithography is presented. Embodiments of valves in accordance with the present invention feature elastomer membrane portions of substantially constant thickness, allowing the membranes to experience similar resistance to an applied pressure across their entire width. Such on-off valves fabricated with upwardly- or downwardly-deflectable membranes can have extremely low actuation pressures, and can be used to implement active functions such as pumps and mixers in integrated microfluidic chips. Valve performance was characterized by measuring both the actuation pressure and flow resistance over a wide range of design parameters, and comparing them to both finite element simulations and alternative valve geometries.