Abstract:
The present invention provides a method of forming a blood-clot microvalve by heating blood in a capillary tube of a microfluidic device. Also described are methods of modulating liquid flow in a capillary tube by forming and removing a blood-clot microvalve.
Abstract:
Systems and methods for improving the adherence of poorly-adherent parylene-to-parylene films or layers and/or altering the water and chemical permeability of the parylene layers. A device having two or more parylene layers is heated in a reduced pressure treatment chamber at a temperature above the deposition temperature of the parylene (e.g., from about room temperature to several hundreds of degrees Celsius) for an extended period of time (e.g., a few hours up to several days). The methods of the present invention have been shown to convert poorly-adherent and/or water-permeable films to optimally-adherent and/or relatively water-impermeable films.
Abstract:
Method for manufacturing a parylene-based electrode array that includes an underlying parylene layer, one or more patterned electrode layers comprising a conductive material such as a metal, and one or more overlying parylene layers. The overlying parylene is etched away or otherwise processed to expose the electrodes where stimulation or recording is to occur. All other conductive material in the device is occluded from the environment by the two layers of parylene surrounding it.
Abstract:
An in-channel check valve assembly (116) is disclosed comprising, an in-channel check valve (100), connected between the front (110) and rear (114) of a channel (102) attached to a silicon substrate (106). The channel may have a width between 10 microns and 400 microns, and the check valve may have a width between about 50 microns and 500 microns. The check valve may be generally circular in shape. The check valve may also be normally closed, that is, sealed in the absence of a pressure differential between the front and the rear portions of the channel. The check valve may include a sealing cap (122) that contacts a valve seat (120) to seal the valve. The valve seat may include a metal layer (130) to separate the contacting surfaces of the valve seat and the sealing cap in the closed position.
Abstract:
A combined IC/Mems process forms the IC parts first, and then forms the MEMS parts (110). One option forms a parylene overlayer, then forms a cavity under the parylene overlayer.
Abstract:
Described are devices including stimulation assemblies connectable to a plurality of electrodes. The plurality of electrodes can be configured to connect to a spinal cord at a location below a lesion of the spinal cord. The stimulation assembly can be configured to deliver stimulation to selected ones of the plurality of electrodes when the stimulation assembly is connected to the plurality of electrodes when located below the lesion of the spinal cord. Methods of using the devices are also described.
Abstract:
A method (and resulting structure) for fabricating a sensing device. The method includes providing a substrate comprising a surface region and forming an insulating material overlying the surface region. The method also includes forming a film of carbon based material overlying the insulating material and treating to the film of carbon based material to pyrolyzed the carbon based material to cause formation of a film of substantially carbon based material having a resistivity ranging within a predetermined range. The method also provides at least a portion of the pyrolyzed carbon based material in a sensor application and uses the portion of the pyrolyzed carbon based material in the sensing application. In a specific embodiment, the sensing application is selected from chemical, humidity, piezoelectric, radiation, mechanical strain or temperature.
Abstract:
Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, frits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals. A self-aligned channel-strengthening technique increases pressure rating of the microfluidic system, allowing it to withstand the high pressure normally used in high performance liquid chromatography (HPLC). On-chip sample injection, separation, and detection of mixture of anions in water is successfully demonstrated using ion-exchange nano-LC.