Abstract:
Embodiments in accordance with the present invention relate to packed-column nano-liquid chromatography (nano-LC) systems integrated on-chip, and methods for producing and using same. The microfabricated chip includes a column, frits/filters, an injector, and a detector, fabricated in a process compatible with those conventionally utilized to form integrated circuits. The column can be packed with supports for various different stationary phases to allow performance of different forms of nano-LC, including but not limited to reversed-phase, normal-phase, adsorption, size-exclusion, affinity, and ion chromatography. A cross-channel injector injects a nanolitre/picolitre-volume sample plug at the column inlet. An electrochemical/conductivity sensor integrated at the column outlet measures separation signals. A self-aligned channel-strengthening technique increases pressure rating of the microfluidic system, allowing it to withstand the high pressure normally used in high performance liquid chromatography (HPLC). On-chip sample injection, separation, and detection of mixture of anions in water is successfully demonstrated using ion-exchange nano-LC.
Abstract:
An apparatus for liquid chromatography comprises a liquid chromatography separation column on a substrate, wherein the separation column is coupled to a heater on the substrate. A chip-based temperature controlled liquid chromatography device comprises a substrate, a thermal isolation zone, and a separation column thermally isolated from the substrate by the thermal isolation zone. An apparatus for chip-based liquid chromatography comprising a cooling device is provided. A temperature gradient liquid chromatography system comprises a chip-based temperature controlled liquid chromatography device, a fluidic coupling, and an electrical interface. Methods of making and methods of using of chip-based temperature gradient liquid chromatography devices are also provided.
Abstract:
An electrostatic fluid regulating device and methods. The device has a substrate. The device also has a first electrode coupled to the substrate. The device has a polymer based diaphragm. A second electrode is coupled to the diaphragm. A polymer based fluid chamber is coupled to the diaphragm. The device also has an inlet coupled to the polymer based fluid chamber and an outlet coupled to the polymer based fluid chamber.
Abstract:
Electrochemical actuation is adopted in an integrated microfluidic chip to transfer fluid for sample preparation, separation and detection. The electrochemical actuation is capable of producing high pressure for on-chip fluidic handling. Technologies and methods are also developed to use only electrical source to control on-chip fluid handling without any external fluidic support. Applications for the devices and methods include micro scale HPLC, ESI-MS, etc.
Abstract:
Systems and methods for monitoring analytes in real time using integrated chromatography systems and devices. Integrated microfluidic liquid chromatography devices and systems include multiple separation columns integrated into a single substrate. Using such a device, parallel analysis of multiple samples can be performed simultaneously and/or sequential analysis of a single sample can be performed simultaneously on a single chip or substrate. The devices and systems are well suited for use in high pressure liquid chromatography (HPLC) applications. HPLC chips and devices including embedded parylene channels can be fabricated using a single mask process.
Abstract:
A microfluidic system with on-chip pumping which can be used for liquid chromatography and also electrospray ionization mass spectrometry and which provides improved efficiency, better integration with sensors, improved portability, reduced power consumption, and reduced cost. The system can include (A) a main chip comprising: a substrate having a front face and a back face; a chromatography column on the front face of said substrate, wherein said column has an inlet and an outlet; an electrospray ionization (ESI) nozzle on the front face of said substrate, wherein said nozzle has an inlet and an outlet, and wherein the inlet of the nozzle is microfluidically coupled to the outlet of the column; one or more pump systems on the front face of said substrate comprising a pump chamber, one or more electrodes, and an outlet microfluidically coupled to the inlet of said column; and (B) a reservoir chip comprising a front surface and a back surface, wherein the reservoir chip has one or more cavities in the back surface which when disposed next to the front surface of the main chip extends the volume of the pump chamber of one of the pump system. Microfabrication can be used to prepare the chips, which can be assembled with a cover and inserted into a testing jig for electronic control and mass spectral analysis. Peptide separations are demonstrated which compete with present commercial systems.
Abstract:
A microfluidic device and method for capacitive sensing. The device includes a fluid channel including an inlet at a first end and an outlet at a second end, a cavity region coupled to the fluid channel, and a polymer based membrane coupled between the fluid channel and the cavity region. Additionally, the device includes a first capacitor electrode coupled to the membrane, a second capacitor electrode coupled to the cavity region and physically separated from the first capacitor electrode by at least the cavity region, and an electrical power source coupled between the first capacitor electrode and the second capacitor electrode and causing an electric field at least within the cavity region. The polymer based membrane includes a polymer.
Abstract:
A surface-micromachined mass flow controller (MFC) comprises an electrostatically actuated microvalve integrated with a thermal flow sensor. The microvalve comprises a normally-open diaphragm defining an aperture allowing fluid communication between first and second flow channels. The diaphragm includes a second electrode actuable toward a valve seat including a first electrode. Fabricated utilizing a multilayer Parylene process, the active microvalve and the flow sensor are integrated onto a single chip to perform closed-loop flow control. For flow control, both Pulse Width Modulation (PWM) and actuation voltage adjustment are demonstrated.
Abstract:
Electrochemical actuation is adopted in an integrated microfluidic chip to transfer fluid for sample preparation, separation and detection. The electrochemical actuation is capable of producing high pressure for on-chip fluidic handling. Technologies and methods are also developed to use only electrical source to control on-chip fluid handling without any external fluidic support. Applications for the devices and methods include micro scale HPLC, ESI-MS, etc.
Abstract:
A microfluidic device and method for capacitive sensing. The device includes a fluid channel including an inlet at a first end and an outlet at a second end, a cavity region coupled to the fluid channel, and a polymer based membrane coupled between the fluid channel and the cavity region. Additionally, the device includes a first capacitor electrode coupled to the membrane, a second capacitor electrode coupled to the cavity region and physically separated from the first capacitor electrode by at least the cavity region, and an electrical power source coupled between the first capacitor electrode and the second capacitor electrode and causing an electric field at least within the cavity region. The polymer based membrane includes a polymer.