Abstract:
An electrochemical technique is employed for removing certain material from a partially finished structure without significantly chemically attacking certain other material of the same chemical type as the removed material. The partially finished structure contains a first electrically non-insulating layer (52C) consisting at least partially of first material, typically excess emitter material that accumulates during the deposition of the emitter material to form electron-emissive elements (52A) in an electron emitter, that overlies an electrically insulating layer (44). An electrically non-insulating member, such as an electron-emissive element, consisting at least partially of the first material is situated at least partly in an opening (50) extending through the insulating layer. With the partially finished structure so arranged, at least part of the first material of the first non-insulating layer is electrochemically removed such that the non-insulating member is exposed without significantly attacking the first material of the non-insulating member.
Abstract:
An electron-emitting device contains a vertical emitter resistor patterned into multiple laterally separated sections (34, 34V, 46, or 46V) situated between the electron-emissive elements (40), on one hand, and emitter electrodes (32), on the other hand. Sections of the resistor are spaced apart along each emitter electrode. The resistor can be formed in a manner self aligned to control electrodes (38 or 52A/58B) of the device or with a separate resistor mask.
Abstract:
A gated filament structure for a field emission display includes a plurality of filaments. Included is a substrate, an insulating layer positioned adjacent to the substrate, and a metal gate layer position adjacent to the insulating layer. The metal gate layer has a plurality of gates, the metal gate layer having an average thickness 's' and a top metal gate layer planar surface that is substantially parallel to a bottom metal gate layer planar surface. The metal gate layer includes a plurality of apertures extending through the gates. Each aperture has an average width 'r' along a bottom planar surface of the aperture. Each aperture defines a midpoint plane positioned parallel to and equally distant from the top metal gate layer planar surface and the bottom metal gate layer planar surface. A plurality of filaments are individually positioned in an aperture. Each filament has a filament axis. The intersection of the filament axis and the midpoint plane defines a point 'O'. Each filament includes a filament tip terminating at a point 'A'. A majority of all filament tips of the display have a length 'L' between each filament tip at point A and point O along the filament axis where, L « (s + r)/2.
Abstract:
An impedance-assisted electrochemical procedure is employed for selectively removing certain material from a structure without significantly electrochemically attacking, and thus without significantly removing, certain other material of the same chemical type as the removed material.
Abstract:
An electron-emitting device contains an electron focusing system (37 or 37A) formed with a base focusing structure (38 or 38A) and a focus coating (39 or 39A) that penetrates, preferably only pathway, into a focus opening (40) extending through the base focusing structure. The focus coating, normally of lower resistivity than the base focusing structure, is typically formed by an angled deposition technique. An access conductor (106 or 106A) is preferably electrically coupled to the lower surface of the focus coating. A potential for controlling the focusing of electrons that travel through the focus opening is provided to the focus coating via the access conductor.
Abstract:
An electrochemical technique is employed for removing certain material from a partially finished structure without significantly chemically attacking certain other material of the same chemical type as the removed material. The partially finished structure contains a first electrically non-insulating layer (52C) consisting at least partially of first material, typically excess emitter material that accumulates during the deposition of the emitter material to form electron-emissive elements (52A) in an electron emitter, that overlies an electrically insulating layer (44). An electrically non-insulating member, such as an electron-emissive element, consisting at least partially of the first material is situated at least partly in an opening (50) extending through the insulating layer. With the partially finished structure so arranged, at least part of the first material of the first non-insulating layer is electrochemically removed such that the non-insulating member is exposed without significantly attacking the first material of the non-insulating member.
Abstract:
An electron-emitting device utilizes an emitter electrode (12) shaped like a ladder in which a line of emitter openings (18) extend through the electrode. In fabricating the device, the emitter openings can be utilized to self-align certain edges, such as edges (38C) of a focusing system (37), to other edges, such as edges (28C) of control electrodes (28), to obtain desired lateral spacings. The self-alignment is typically achieved with the assistance of a backside photolithographic exposure operation. The ladder shape of the emitter electrode also facilitates the removal of short-circuit defects involving the electrode.