Abstract:
An electron-emitter having a lower non-insulating emitter region (42), an overlying insulating layer (44), and a gate layer (48A, 60A, 60B, 120A, or 180A/184) is fabricated by a process in which particles (46) are distributed over one of the following layers: the insulating layer, the gate layer, a primary layer (50A, 62A, or 72) provided over the gate layer, a further layer (74) provided over the primary layer, or a pattern-transfer layer (182). The particles are utilized in defining gate openings (54, 66, 80, 122, or 186/188) through the gate layer. The gate openings are then variously employed in forming dielectric openings (56, 58, 80, 114, 128, 144, or 154) through the insulating layer. Electron-emissive elements that can, for example, be shaped like cones (58A or 70A) or like filaments (106B, 116B, 130A, 146A, or 156B) are formed in the dielectric openings.
Abstract:
A field emission display (110) having a correction system (105) with a correction coefficient derived from emission current is presented. Within one embodiment, a field emission display (110) with an anode (25) at the faceplate and a focus structure (90). The anode potential is held at ground while the focus structure (90) potential is held between, but is not limited to, 40 and 50 volts. The current flowing to the focus structure (90) is measured and used as the basis for the correction coefficient for the field emission display (110).
Abstract:
An electron-emitter having a lower non-insulating emitter region (42), an overlying insulating layer (44), and a gate layer (48A, 60A, 60B, 120A, or 180A/184) is fabricated by a process in which particles (46) are distributed over one of the following layers: the insulating layer, the gate layer, a primary layer (50A, 62A, or 72) provided over the gate layer, a further layer (74) provided over the primary layer, or a pattern-transfer layer (182). The particles are utilized in defining gate openings (54, 66, 80, 122, or 186/188) through the gate layer. The gate openings are then variously employed in forming dielectric openings (56, 58, 80, 114, 128, 144, or 154) through the insulating layer. Electron-emissive elements that can, for example, be shaped like cones (58A or 70A) or like filaments (106B, 116B, 130A, 146A, or 156B) are formed in the dielectric openings.
Abstract:
An electron-emitting device contains a vertical emitter resistor patterned into multiple laterally separated sections (34, 34V, 46, or 46V) situated between the electron-emissive elements (40), on one hand, and emitter electrodes (32), on the other hand. Sections of the resistor are spaced apart along each emitter electrode. The resistor can be formed in a manner self aligned to control electrodes (38 or 52A/58B) of the device or with a separate resistor mask.