Abstract:
There is a photosensor comprising: a photoconductive layer containing amorphous silicon provided on a substrate in which this photoconductive layer consists of laminated films of two or more layers having different refractive indexes and the refractive index of the lowest layer of the laminated films is not larger than 3.2 for the incident light of a wavelength of 6328 ANGSTROM ; a pair of electrodes provided in electrical contact with the photoconductive layer; and a photo sensing section. A long size image sensor unit is constituted by a plurality of such photosensors arranged like an array, a matrix drive circuit to matrix-drive each photosensor, and a light source such as light emitting diodes or a fluorescent lamp to illuminate an original to be read. With this image sensor unit, it is possible to provide a low-cost image reading apparatus which can read an image on the original at a high speed in which: the uniformity of the characteristic of each photosensor is improved; a variation in signal between the bits is reduced; a correction circuit for such a variation is unnecessary; and the peel-off of the photoconductive layer does not occur. A method of manufacturing such photosensors is also disclosed.
Abstract:
There is a photosensor comprising: a photoconductive layer containing amorphous silicon provided on a substrate in which this photoconductive layer consists of laminated films of two or more layers having different refractive indexes and the refractive index of the lowest layer of the laminated films is not larger than 3.2 for the incident light of a wavelength of 6328 ANGSTROM ; a pair of electrodes provided in electrical contact with the photoconductive layer; and a photo sensing section. A long size image sensor unit is constituted by a plurality of such photosensors arranged like an array, a matrix drive circuit to matrix-drive each photosensor, and a light source such as light emitting diodes or a fluorescent lamp to illuminate an original to be read. With this image sensor unit, it is possible to provide a low-cost image reading apparatus which can read an image on the original at a high speed in which: the uniformity of the characteristic of each photosensor is improved; a variation in signal between the bits is reduced; a correction circuit for such a variation is unnecessary; and the peel-off of the photoconductive layer does not occur. A method of manufacturing such photosensors is also disclosed.
Abstract:
A photosensor comprising a photoconductive layer provided on a substrate. The layer contains amorphous silicon. At least a portion of the layer has a refractive index varying continuously through the thickness of the layer. The refractive index of the layer is 3.2 or less at a wavelength of 6.328 A in the vicinity of the surface of the substrate. A pair of electrodes are provided in electrical contact with the photoconductive layer. A photoreceptor is also provided, part of which is constituted by the spacing between the electrodes of the pair.
Abstract:
A liquid crystal device comprises a pair of substrates and a ferroelectric liquid crystal disposed between the substrates. At least one of the substrates has thereon a color filter layer and a protection layer for preventing direct contact between the color filter and the ferroelectric liquid crystal. Particulate spacers are preferably disposed between the substrates. The protection layer preferably comprises a film having a pencil hardness of HB or harder (JIS K 5401).
Abstract:
A liquid crystal display device comprising of picture element electrodes (25) provided on a first plane of a substrate (21,22) and an opposed electrode (29) placed opposedly to the picture element electrodes, between which a liquid crystal (26) is carried, characterized in that in a region of the substrate corresponding to the picture element electrodes is in the form of a concave hollow portion (23) extending from a second plane opposite the first plane of the substrate towards the first plane, the region being light translucent, and the concave portion (23) having a translucent material (36) enclosed therein.
Abstract:
There is a photosensor comprising: a photoconductive layer containing amorphous silicon provided on a substrate in which this photoconductive layer consists of laminated films of two or more layers having different refractive indexes and the refractive index of the lowest layer of the laminated films is not larger than 3.2 for the incident light of a wavelength of 6328 ANGSTROM ; a pair of electrodes provided in electrical contact with the photoconductive layer; and a photo sensing section. A long size image sensor unit is constituted by a plurality of such photosensors arranged like an array, a matrix drive circuit to matrix-drive each photosensor, and a light source such as light emitting diodes or a fluorescent lamp to illuminate an original to be read. With this image sensor unit, it is possible to provide a low-cost image reading apparatus which can read an image on the original at a high speed in which: the uniformity of the characteristic of each photosensor is improved; a variation in signal between the bits is reduced; a correction circuit for such a variation is unnecessary; and the peel-off of the photoconductive layer does not occur. A method of manufacturing such photosensors is also disclosed.
Abstract:
A method for bonding of a color separation filter comprises placing a color separation filter through an intermediary UV-ray curable type bonding agent on a solid state image pick-up device, effecting registration between the solid state image pick-up device and the color separation filter, then applying irradiation of UV-ray at a luminous intensity of 30 mW/cm2 or higher from the side of the color separation filter thereby to subject said bonding agent to partial curing, and thereafter applying UV-ray irradiation at a luminous intensity of 5 mW/cm2 or lower from the side of the color separation filter thereby to subject said bonding agent to full curing.
Abstract:
An electrode substrate (20) is produced through at least the following steps of: forming a plurality of first electrodes (22) on a light-transmissive substrate (11) while leaving a spacing between the first electrodes, filling a resin (135) in the spacing, curing the filled resin, and forming a plurality of second electrodes (6) on the first electrodes (22) and the resin (135) so as to be in contact with the associated first electrodes, respectively. In the electrode substrate (20), the first electrodes (22) have a thickness h (nm) and an average surface roughness d (nm) and the resin (135) has a curing shrinkage ratio α (%). The thickness h, the average surface roughness d and the curing shrinkage ratio α satisfies the following relationship: d ≥ α·h/1000. A liquid crystal device (P3) is produced by using the electrode substrate (20) satisfying the above relationship, whereby a ripple-shaped shrinkage due to a shrinkage of the resin (135) can be prevented in an effective optical modulation region to minimize a cell gap unevenness and provide a uniform alignment state to liquid crystal molecules, thus suppressing occurrences of an ununiform optical state, crosstalk and an irregularity in drive characteristics to improve display qualities.
Abstract:
A liquid crystal device is constituted by a pair of electrode plates and a liquid crystal composition disposed between the electrode plates. At least one of the electrode plates comprises a light-transmissive substrate, a plurality of electrodes including principal electrodes and auxiliary electrodes supported on the light-transmissive substrate, and an insulating layer. Each auxiliary electrode is disposed between an associated principal electrode and the light-transmissive substrate so as to be electrically connected with at least a part of the associated principal electrode, and the auxiliary electrodes being disposed with spacings therebetween which are filled with the insulating layer. The liquid crystal composition comprises at least one species of a fluorine-containing mesomorphic compound comprising a fluorocarbon terminal portion and a hydrocarbon terminal portion, the terminal portions being connected with a central core, and having smectic mesophase or latent smectic mesophase. The combination of the above specific cell structure and the specific liquid crystal composition is effective in improving display quality (e.g., contrast) while minimizing a voltage waveform deformation.
Abstract:
A liquid crystal device is constituted by a pair of electrode plates and a liquid crystal composition disposed between the electrode plates. At least one of the electrode plates comprises a light-transmissive substrate, a plurality of electrodes including principal electrodes and auxiliary electrodes supported on the light-transmissive substrate, and an insulating layer. Each auxiliary electrode is disposed between an associated principal electrode and the light-transmissive substrate so as to be electrically connected with at least a part of the associated principal electrode, and the auxiliary electrodes being disposed with spacings therebetween which are filled with the insulating layer. The liquid crystal composition comprises at least one species of a fluorine-containing mesomorphic compound comprising a fluorocarbon terminal portion and a hydrocarbon terminal portion, the terminal portions being connected with a central core, and having smectic mesophase or latent smectic mesophase. The combination of the above specific cell structure and the specific liquid crystal composition is effective in improving display quality (e.g., contrast) while minimizing a voltage waveform deformation.