Abstract:
The invention concerns a method and a system wherein the etching process is carried out in a reaction chamber (1) by acting on a substrate (16) polarized by a polarization generator (15) a plasma generated by a plasma source (4) contained in a sealed wall (5) made of dielectric material enclosed with an inductive coupling antenna (6) fed by a radio frequency generator (7). Control means (13) monitor the solenoid valves (12a, 12b, 12c) and the radio frequency generator (7), so as to produce a preparatory step which consists in gradually establishing plasma excitation power, a step which consists in injecting into the reaction chamber (1) a neutral gas such as argon or nitrogen, and in gradually establishing the power delivered by the radio frequency generator (7) until a nominal power is achieved, thereby avoiding heat shocks liable to destroy the sealed wall (5) of dielectric material, thus enabling use of plasma excitation power levels higher than 3000 watts.
Abstract:
PROBLEM TO BE SOLVED: To provide a new vacuum pumping system structure avoiding destruction of a dry primary pump when pumping low thermal conductivity gas. SOLUTION: In the vacuum pumping system, the Roots or claw multistage dry primary pump exhausts gas into an outlet stage including an additional piston or a membrane pump 6 connected in parallel with an auxiliary exhaust pipe 7 including a check valve 11. The outlet stage extensively reduces heating of the primary pump 1, and by the vacuum pumping system gas having low thermal conductivity such as argon or a xenon can be efficiently pumped without damage.
Abstract:
PROBLEM TO BE SOLVED: To provide a plasma vacuum substrate treatment process and a system that can quickly change the flow of active gases in a vacuum enclosure. SOLUTION: In a process for treating a substrate 16 arranged in a vacuum enclosure 1, the present invention provides for compensating any variation of the active gas supply flowrate via active gas supply pipe 4 by injecting a complementary flowrate of control gas into an area 25 close to controlled gas suction means 3. This prevents a pressure control system and an impedance matching system from being unable to respond to variations in the input active gas flowrate in about one second.
Abstract:
The invention concerns a reactor wherein the reaction chamber (1) is delimited by a sealed wall (2) protected by a heating jacket (14). The heating jacket (14) is brought to a temperature higher than the polymer condensation temperature generated during the passivation steps of an alternating plasma etching process, so as to prevent polymer deposition on the sealed wall (2) of the reaction chamber (1) and on the heating jacket itself (14), thereby maintaining a constant etching speed.
Abstract:
The invention concerns a method and a system wherein the etching process is carried out in a reaction chamber (1) by acting on a substrate (16) polarized by a polarization generator (15) a plasma generated by a plasma source (4) contained in a sealed wall (5) made of dielectric material enclosed with an inductive coupling antenna (6) fed by a radio frequency generator (7). Control means (13) monitor the solenoid valves (12a, 12b, 12c) and the radio frequency generator (7), so as to produce a preparatory step which consists in gradually establishing plasma excitation power, a step which consists in injecting into the reaction chamber (1) a neutral gas such as argon or nitrogen, and in gradually establishing the power delivered by the radio frequency generator (7) until a nominal power is achieved, thereby avoiding heat shocks liable to destroy the sealed wall (5) of dielectric material, thus enabling use of plasma excitation power levels higher than 3000 watts.
Abstract:
PROBLEM TO BE SOLVED: To provide an effective shield in an ICP-RIE reactor. SOLUTION: A separate shield arrangement 20 is included which is fixed in a detachable way on a substrate holder 3 above a clamping means 10 to mask the clamping means with respect to reactive ion flux. The shield arrangement 20 made of a single ring can be mounted on the substrate holder 3 directly upon the clamping means or can also be mounted directly above it and separated by a smaller distance from the clamping means 10. The shield arrangement 70 can also be made of at least two rings 22. The material of the shield arrangement 20 can be covered with a film of dielectric material and electrically connected to the ground 23 through the substrate holder 3.
Abstract:
PROBLEM TO BE SOLVED: To enable etching with a high aspect ratio and a high selectivity by stimulating a mixed gas composed of an etching gas and a passivation gas with a low-power electromagnetic radiation, applying a high bias voltage, stimulating the mixed gas with a high-power electromagnetic radiation, and applying a low bias voltage to a substrate. SOLUTION: A mixed gas composed of an etching gas and a passivation gas is fed in a chamber 10, a comparatively low r-f power is applied from a power source 30 to form a plasma, and a bias voltage is given from an oscillator 18 on a substrate to form a comparatively high electric field. After 10 to 100 sec for example, the power source 30 is switched to a comparatively high power to provide a high energy stimulated state of a plasma, the bias potential generated by the oscillator 18 on the substrate lowers to a comparatively low level, a protective polymer layer 46 of a specified thickness is formed on the walls of trenches after 0.5 to 3 sec for example, and the polymer layer in the trench bottoms is stripped by the impact of anisotropic ions accelerated by the high bias potential during etching.
Abstract:
Un dispositif pour établir et contrôler un mélange gazeux à faible pression dans une enceinte à vide (8) comprend au moins une pompe secondaire (9) de type moléculaire, turbomoléculaire ou hybride, suivie d'au moins une pompe primaire (10), avec des premiers moyens de contrôle et d'ajustement (22) tels qu'une vanne de régulation (24) pour contrôler et ajuster la pression gazeuse totale du mélange gazeux dans l'enceinte à vide (8) en fonction d'une consigne de pression totale (27). Le dispositif comprend en outre des seconds moyens de contrôle et d'ajustement (28) tels qu'une seconde vanne de régulation (29a) en aval de la pompe secondaire (9). La seconde vanne de régulation (29a) est pilotée en fonction d'une consigne de pression de refoulement (32) pour modifier la pression de refoulement de la pompe secondaire (9) et adapter ainsi sa capacité de pompage sélectif. Cela permet d'ajuster les proportions des gaz du mélange gazeux dans l'enceinte à vide, indépendamment de la pression totale commandée par la première vanne de régulation (24).
Abstract:
La présente invention a pour objet un dispositif destiné à supporter un substrat semi-conducteur (4), comprenant un porte-échantillon (1) solidaire de la chambre de procédé comportant un système de refroidissement (2, 3) des moyens de fixation dudit substrat (4) sur ledit porte-échantillon (1), et des moyens de liaison électrique (11) avec un élément (5a) intermédiaire mobile rigide disposé entre le porte-échantillon (1) et le substrat (4). L'élément (Sa) comporte (a) une base (7) constituée d'un premier matériau ayant une conductivité thermique supérieure à celle du substrat (4), (b) une première couche (8) recouvrant la base (7) constituée d'un deuxième matériau ayant une rigidité diélectrique élevée, (c) deux électrodes (9a, 9b) disposées sur la première couche (8), (d) une deuxième couche (12), recouvrant la première couche (8) et les électrodes (9a, 9b), constituée d'un troisième matériau ayant une rigidité diélectrique élevée.