Abstract:
PROBLEM TO BE SOLVED: To provide a decoder suitable for a chip having a small number of small-size contacts with sufficient intervals between the contact by determining the quantity of fluorescence of a contact to decide a density of substance mixed with the fluorescent material. SOLUTION: An image acquisition means 4 is focused on a matrix disposed and fixed below an optical axis of a microscope 1, and a reference contact aligned to the optical center of this system is automatically retrieved, while an image of one contact of the matrix is acquired. The system has a calculation part for calculating fluorescence of the contact and deducing the density of substance. An illuminating means has a ring-shaped light source 11 and a laser light source 13 for exciting a fluorescent material contained in a mixture constituting the substance. The system also has a means for recording the image of the contact and a processing means 7 for analyzing the image. Thereby, the system can determine a quantity of the fluorescence of the contact to decide the density of the substance mixed with the fluorescent material.
Abstract:
PROBLEM TO BE SOLVED: To provide a fluorescent imaging device capable of easily discriminating molecules which are different in size. SOLUTION: This fluorescent imaging device comprises the first means in which a component to be analyzed is put, the second means which illuminates the component to be analyzed by polarization and the third means which measures fluorescence emitting from the component under the effect of the polarization. In this case, characteristically, the first means comprises a parallel micro channel structure (4), and the second means has at least one combining device (2, 5) which guides polarized light to the micro channel.
Abstract:
PROBLEM TO BE SOLVED: To provide an analyzer capable of practicing analysis having reliability and reproducibility by a chip comprising many electrodes coated with different reagents or probe molecules and capable of individually heating to prescribed temperatures. SOLUTION: This analyzer comprises at least one chip (110) equipped with plural analytic electrodes (112). The device is further equipped with a means (150) for individually heating the analytic electrodes. The analyzer can be applied to analysis of chemical or biological products and can be applied to e.g. antigen/antibody reaction or DNA/DNA analysis.
Abstract:
The invention concerns a device for microscopic observation of at least a sample (2) such as a biological sample, arranged on a support (6), said device comprising at least a light source (42) for illuminating the sample, means (48) for reflecting said light towards the sample, a catadioptric lens (38) for observing the sample, said lens forming an image of the sample, and means (52) for acquiring said image. The reflecting means are arranged between the lens and the support.
Abstract:
The inventive device comprises a first light source and a first wavelength (?1) corresponding to an excitation wavelength (?Ex) of a fluorophore. The excitation wavelength (?Ex) and an emission wavelength (?Em) of the fluorophore delimit a predetermined interval (?Em). The device also comprises a second light source having a second wavelength (?2) offset with regard to the first wavelength (?1) in such a manner that it is outside said predetermined interval (?Em). The offset (?12) between the first (?1) and second (?2) wavelengths is between 30 nm and 100 nm. A camera is provided comprising a filter opaque to the first (?1) and second (?2) wavelengths and transparent to the emission wavelength (?Em) and to the wavelengths noticeably greater than the highest of the first (?1) and second (?2) wavelengths. The light sources and the camera are synchronized for alternately activating one of the light sources and enabling the camera to alternately acquire a fluorescence image and a background noise image.
Abstract:
The method involves introducing a fluorescent marker e.g. antibody/fluorophore conjugate, into a biological tissue e.g. organ. The marker is excited by incident light radiations, where the marker is sequentially excited at different incident excitation wavelengths. Bands of emission relating to fluorescence emitted by the marker are detected in response to the excitation. Intensities of fluorescence relative to the emission bands are analyzed. The marker is based on a group of fluorophores that are excited by the wavelengths and based on an up-converting semiconductor inorganic nanocrystal.
Abstract:
Le domaine général de l'invention est celui des sondes optiques per-opératoires destinées à aider le chirurgien dans son geste médical.Les sondes optiques à fluorescence selon l'invention sont destinées à être utilisées sur des tissus vivants où les zones malades ont été marquées par un marqueur fluorescent. Elles possèdent un double éclairage. Le premier (1, 2) situé dans le rouge ou le proche infra-rouge est nécessaire pour réaliser la fluorescence des zones marquées (30) et obtenir une image exploitable par une caméra (7). Le second (9, 10) situé dans le visible est nécessaire pour éclairer en lumière visible les zones marquées, facilitant ainsi le travail du chirurgien. L'éclairage visible peur être soit ponctuel, soit être réalisé par un projecteur d'images. Dans ce dernier cas, l'image projetée éclaire uniquement les zones malades.
Abstract:
The method involves introducing a fluorescent marker e.g. antibody/fluorophore conjugate, into a biological tissue e.g. organ. The marker is excited by incident light radiations, where the marker is sequentially excited at different incident excitation wavelengths. Bands of emission relating to fluorescence emitted by the marker are detected in response to the excitation. Intensities of fluorescence relative to the emission bands are analyzed. The marker is based on a group of fluorophores that are excited by the wavelengths and based on an up-converting semiconductor inorganic nanocrystal.
Abstract:
La présente invention concerne un procédé d'imagerie optique par fluorescence d'au moins un tissu biologique, notamment pour délimiter des régions d'intérêt du ou des tissu(s) à analyser par tomographie.Le procédé selon l'invention comprend les étapes suivantes :a) l'introduction d'au moins un marqueur fluorescent dans le(s) tissu(s),b) l'excitation du ou de chaque marqueur par des rayonnements lumineux incidents et une détection de bandes d'émission relatives à des rayonnements fluorescents émis par le ou chaque marqueur en réponse à cette excitation, puisc) l'analyse de la fluorescence de ces bandes d'émission,et il est caractérisé en ce que l'étape b) comprend :- une excitation séquentielle, par n longueurs d'onde d'excitation lambdai incidentes différentes, du ou de chaque marqueur apte à être excité par au moins deux de ces lambdai et à émettre en réponse, pour chaque lambdai, une série Si de m bandes d'émission Bj simultanées de différentes longueurs d'onde lambda'j qui sont sensiblement les mêmes d'une série Si à une autre (où n et m >= 2, et où i et j varient de 1 à n et de 1 à m), et- une détection de ces séries, pour en déduire une estimation de la localisation tridimensionnelle du ou de chaque marqueur dans le(s) tissu(s) et/ou des coefficients d'absorption moyens de tissu(s) vis-à-vis des excitations lambdai.
Abstract:
Analytical support (A), which is fixed to a carrier, comprises many oligonucleotides (ON), each of which is labeled by a fluorescent compound (I), the fluorescence of which varies when ON hybridizes to its complement, is new. Independent claims are also included for the following: (1) the quality control of (A) in which the amounts and positions of the fixed ONs are determined by measuring the fluorescence from (I); an (2) analyzing biological targets by applying them to (A) and identifying those ON which have hybridized by measuring fluorescence from each ON before and after contact with the targets.