Abstract:
A container includes a container body (201), optionally a lid (220), and an insert (100) secured, optionally fixedly secured within an interior of the container body. The insert has a base material, optionally a polymer, for providing structure to the insert, and a desiccant. The insert further has an opening leading to an interior compartment (102) configured for housing products and an outer surface (104) facing an inner surface of the container body. A void is provided between an exposed portion of the outer surface of the insert and a portion of the inner surface of the container body. At least one fluid pathway is provided between the void and the interior compartment of the insert.
Abstract:
Disclosed are antimicrobial releasing agents, methods of preparing the antimicrobial releasing agents, and entrained polymers containing antimicrobial releasing agents. The antimicrobial releasing agent is prepared with a carrier having a pH below 3.5. The carrier is optionally polysulfonic acid, phyllosilicate, or others as disclosed. The antimicrobial releasing agent further includes an active compound such as a metal chlorite, and a trigger. Optionally, the antimicrobial releasing agent may be compounded into entrained polymers that release ClO2 in gas form.
Abstract:
Disclosed is an apparatus. The apparatus includes a reel, a carrier tape wrapped about the reel and a cover tape disposed over the carrier tape. The cover tape and the carrier tape are configured to contain a plurality of electronic components, e.g., integrated circuits. At least one of the carrier tape and the cover tape is made of desiccant entrained polymer, or has desiccant entrained polymer provided on it.
Abstract:
A method of over-molding materials includes: providing a first material in a groove in a first portion of a mold such that only a single surface of the first material is exposed to a vacant portion of the mold; providing, via an injection molding process, a second material in a liquid form in the vacant portion of the mold adjacent to, and in engagement with, the first material; and allowing the second material to solidify and become directly coupled to the first material, thus forming a single component. During the method, the entire single surface of the first material is flush with a plane defined by outer surface of the first portion of the mold. The second material has one or both of a greater hardness when solidified than the first material and/or a higher melting temperature than the first material.
Abstract:
A method of over- molding materials includes: providing a first material in a groove in a first portion of a mold such that only a single surface of the first material is exposed to a vacant portion of the mold; providing, via an injection molding process, a second material in a liquid form in the vacant portion of the mold adjacent to, and in engagement with, the first material; and allowing the second material to solidify and become directly coupled to the first material, thus forming a single component. The second material has one or both of a greater hardness when solidified than the first material and/or a higher melting temperature than the first material.
Abstract:
A container, e.g., bottle, is formed by a blow molding process. The container includes a base and a sidewall extending from the base. The base and the sidewall define an interior configured to house at least one product. At least one of the sidewall and the base has a barrier layer and a desiccant layer attached to the barrier layer. The barrier layer and the desiccant layer are each blow molded together. The barrier layer is located external relative to the desiccant layer and is made of a plastic material. The desiccant layer is made of a monolithic composition comprising a mixture of a base polymer, a desiccant, and a channeling agent.
Abstract:
Disclosed are methods for forming and adhering an entrained polymer structure to a substrate. The methods include providing a substrate (114) configured to receive application of a molten entrained polymer (118). A mineral entrained polymer in molten form is applied in a predetermined shape, to a surface of the substrate, to form a solidified entrained polymer structure on the substrate. The entrained polymer includes a monolithic material formed of at least a base polymer (25) and a mineral active agent (30) to absorb excess moisture. The surface of the substrate is compatible with the molten entrained polymer so as to thermally bond with it. In this way, the entrained polymer bonds to the substrate and solidifies upon sufficient cooling of the entrained polymer. The polymer can have a channeling or foaming agent (35), eg polyglycol. To apply the polymer is provided a hot melt dispensing apparatus comprising: a feeder (102) (optionally an extruder or loader) for providing a flow of mineral entrained polymer in molten form; one or more hoses (104), each of which having an internal lumen in fluid communication with an exit (106) of the feeder to receive flow of the mineral entrained polymer in molten form, the lumen terminating at an applicator (110) to which the entrained polymer in molten form is conveyed; the applicator comprising a dispenser (112) for applying the entrained polymer in the predetermined shape to the surface of the substrate. The hose and the dispenser can be heated.
Abstract:
A system and method are disclosed for inhibiting or preventing the growth of microbes and/or for killing microbes in a closed package or container in which a good (optionally a food product) is held or stored. The system and method optionally include use of an entrained polymer article, preferably a film, that includes an antimicrobial releasing agent.
Abstract:
Disclosed are methods for forming and adhering an entrained polymer structure to a substrate. The methods include providing a substrate configured to receive application of a molten entrained polymer. A 3A molecular sieve entrained polymer in molten form is applied in a predetermined shape, to a surface of the substrate, to form a solidified entrained polymer structure on the substrate. The entrained polymer includes a monolithic material formed of at least a base polymer and 3A molecular sieve. The surface of the substrate is compatible with the molten entrained polymer so as to thermally bond with it. In this way, the entrained polymer bonds to the substrate and solidifies upon sufficient cooling of the entrained polymer.
Abstract:
Disclosed are antimicrobial releasing agents, methods of preparing the antimicrobial releasing agents, and entrained polymers containing antimicrobial releasing agents. The antimicrobial releasing agent is prepared with an acidified hydrophilic material with a pH below 3.5 as a carrier, an active compound, and a trigger. The entrained polymer of the invention releases an antimicrobial agent in gas form, such as ClO 2 , optionally over a range of concentration from 150 ppm to 1800 ppm per gram of the entrained polymer under certain tested conditions.