Abstract:
A lower extremity orthosis, including at least one actuator configured to control a motion of at least one joint of a person wearing the orthosis, is provided with a handle including a force sensor configured to produce a signal representing a force applied to the handle. A controller, which is in communication with the force sensor and the at least one actuator, is configured to modify the motion based on the signal from the force sensor. The system can be particularly employed to enable a physical therapist to have input in controlling and modifying the positions and/or forces prescribed by the lower extremity orthosis during rehabilitation of the person.
Abstract:
An exoskeleton (100; 204; 304; 404; 504; 602; 702; 802; 902; 1002) includes a control system (120; 205; 305; 405; 505; 603; 703; 803; 903; 1003; 1010) which incorporates a feedback system used to establish and communicate orthosis operational information to a physical therapist (202, 302, 402) and/or to an exoskeleton user (109; 201; 301; 401; 501; 601; 701; 801; 901; 1001). The feedback system can take various forms, including employing sensors (704; 804; 1004; 1010) to establish a feedback ready value and communicating the value through one or more light sources (206; 306; 503; 608) which can be in close proximity to joints of the exoskeleton joints.
Abstract:
An exoskeleton (100; 200) can be reconfigured, adjusted and/or controlled on the fly utilizing devices which fall into three categories, particularly including a swappable unactuated leg, lockable transverse and coronal hip rotations, and software controlled free joints. More specifically, the first device allows for the creation of a modular joint system in which individual exoskeleton joints (230; 231; 232; 233; 249) or limbs (112L; 112R) can be changed or swapped to optimize an exoskeleton for a particular user. The second device is concerned with mechanically controlling, such as locking and unlocking, joints thereby allowing, for example, an exoskeleton leg to pivot or not pivot in an axis that is not actuated.
Abstract:
An exoskeleton (100; 204; 304; 404; 504; 602; 702; 802; 902; 1002) includes a control system (120; 205; 305; 405; 505; 603; 703; 803; 903; 1003; 1010) which incorporates a feedback system used to establish and communicate orthosis operational information to a physical therapist (202, 302, 402) and/or to an exoskeleton user (109; 201; 301; 401; 501; 601; 701; 801; 901; 1001). The feedback system can take various forms, including employing sensors (704; 804; 1004; 1010) to establish a feedback ready value and communicating the value through one or more light sources (206; 306; 503; 608) which can be in close proximity to joints of the exoskeleton joints.
Abstract:
Un dispositivo de exoesqueleto configurado para acoplarse a una persona (109), comprendiendo el dispositivo de exoesqueleto: una conexión de tronco (110) configurada para acoplarse al tronco de la persona (109), al menos una conexión de pierna (112) configurada para acoplarse a la pierna (124) de la persona (109), al menos una articulación de exoesqueleto (145, 150, 160), al menos un actuador (125) acoplado a la al menos una articulación de exoesqueleto (145, 150, 160) y configurado para mover la al menos una articulación de exoesqueleto (145, 150, 160), una pluralidad de sensores configurados para medir al menos uno de un ángulo y las fuerzas de al menos una articulación del exoesqueleto (145, 150, 160), y un controlador (120) configurado para recibir señales de la pluralidad de sensores, y controlar el al menos un actuador (125) para ayudar a que la persona (109) camine o se mueva, en donde dicho controlador (120) está configurado, además, para estimar al menos un valor de retroalimentación lista en función de las señales de la pluralidad de sensores, en donde el valor de retroalimentación lista se selecciona del grupo que consiste en: a. el nivel de asistencia proporcionado por la al menos una articulación del exoesqueleto (145, 150, 160), y b. el par en la al menos una articulación del exoesqueleto (145, 150, 160), en donde el dispositivo de exoesqueleto comprende, además, al menos un sistema de retroalimentación operado por el controlador (120) y configurado para comunicar el valor de retroalimentación lista a la persona (109), mediante lo cual el dispositivo de exoesqueleto proporciona a la persona (109) información operativa del dispositivo de exoesqueleto que de otro modo no estaría disponible para la persona (109), caracterizado por que: el sistema de retroalimentación incluye al menos una luz próxima a la al menos una articulación del exoesqueleto (145, 150, 160), indicando la al menos una luz el nivel de asistencia proporcionado por la al menos una articulación del exoesqueleto (145, 150, 160) o el par en la al menos una articulación del exoesqueleto (145, 150, 160).
Abstract:
A lower extremity orthosis, including at least one actuator configured to control a motion of at least one joint of a person wearing the orthosis, is provided with a handle including a force sensor configured to produce a signal representing a force applied to the handle. A controller, which is in communication with the force sensor and the at least one actuator, is configured to modify the motion based on the signal from the force sensor. The system can be particularly employed to enable a physical therapist to have input in controlling and modifying the positions and/or forces prescribed by the lower extremity orthosis during rehabilitation of the person.
Abstract:
An exoskeleton can be reconfigured, adjusted and/or controlled on the fly utilizing devices which fall into three categories, particularly including a swappable unactuated leg, lockable transverse and coronal hip rotations, and software controlled free joints. More specifically, the first device allows for the creation of a modular joint system in which individual exoskeleton joints or limbs can be changed or swapped to optimize an exoskeleton for a particular user. The second device is concerned with mechanically controlling, such as locking and unlocking, joints thereby allowing, for example, an exoskeleton leg to pivot or not pivot in an axis that is not actuated. The third device allows an actuated exoskeleton joint to be adjusted on the fly using software to simulate a freely rotating joint. The various devices can be used either alone or in combination to enable any given exoskeleton to be appropriately reconfigured, such as when a patient advances during therapy.
Abstract:
A lower extremity orthosis, including at least one actuator configured to control a motion of at least one joint of a person wearing the orthosis, is provided with a handle including a force sensor configured to produce a signal representing a force applied to the handle. A controller, which is in communication with the force sensor and the at least one actuator, is configured to modify the motion based on the signal from the force sensor. The system can be particularly employed to enable a physical therapist to have input in controlling and modifying the positions and/or forces prescribed by the lower extremity orthosis during rehabilitation of the person.