Abstract:
In a telecommunications network, a method and apparatus for allocating channels makes signal quality measurements for channels that are in use or available for use and for channels that may become available for use. Already selected channels (i.e., channels in use or available for use) that exhibit poor signal quality characteristics are exchanged with candidate channels (i.e., channels that may become available for use) that exhibit better signal quality characteristics to thereby improve the overall signal quality of the network.
Abstract:
Method and arrangement for use in a node in a first system associated with a first frequency band for radio communication, for avoiding or reducing interference in a second frequency band associated with a second system, which second frequency band is adjacent to the first frequency band. The method comprises detecting activity of the second system in the second frequency band and determining characteristics of the second system current activity in the second frequency band. The method further comprises adjusting at least one parameter related to radio communication, based on said characteristics, such that interference to the second frequency band, from radio communication associated with the node, is adapted to the second system activity in said second frequency band.
Abstract:
Methods and arrangements for use in a respective node and mobile terminal in a first system associated with a first frequency band for radio communication, for supporting avoiding or reducing interference in a second frequency band associated with a second system, which second frequency band is adjacent to the first frequency band. The method for use in the node comprises detecting activity of the second system in the second frequency band and adjusting the bandwidth used by the node for communication, based on characteristics of the detected current activity of the second system in the second frequency band, such that interference to the second frequency band, from radio communication associated with the node, is adapted to the second system activity in said second frequency band. The method further comprises providing information of said adjustment to at least one mobile terminal. Further, information of said adjustment could be provided to neighboring nodes.
Abstract:
The present invention relates generally to the problem of determining the identity of a cell for e.g. cell handoff or automatic frequency planning, and more particularly to the problem of determining the true identity of a cell when only the transmission frequency and a non-unique identity code is known. A candidate list is created for each cell. This candidate list is created based on a function of various elements e.g. distance, transmission power, cell type, and antenna placement. The cells are then ranked on the candidate list based on this function. When a particular frequency/code combination is detected, the candidate list is then consulted, and the highest ranking cell with the same frequency/code combination is chosen as being the signal source. In an alternative embodiment the neighbor cell list is used to create the candidate list. If there are no matches on this list for the detected frequency/code combination, then the neighbors of the cells on the candidate list are also added to the candidate list which is then checked for a match.
Abstract:
Users of a given service in a wireless communication system that includes a plurality of multi-service subsystems are allocated to one of the subsystems in accordance with a combined capacity region of the wireless communication system. The combined capacity region is determined based upon capacity regions of each of the plurality of multi-service subsystems. The capacity regions of the plurality of multi-service subsystems are determined using a relative decrease in users of a first service as a function of an increase in users of a second service.
Abstract:
In a telecommunications system that employs frequency hopping techniques, network performance can be significantly improved by taking into consideration the level of interaction (e.g., the collision rate) between frequency hopping sequences, when allocating the frequency hopping sequences throughout the network. In a cellular network, this may be accomplished by deriving a network performance measure as a function of a current allocation of frequency hopping sequences for a number of cells and as a function of an expected collision rate (between the frequency hopping sequences) that appear for the current allocation. The frequency hopping sequences are then re-allocated amongst one or more cells until network performance is optimized. The allocation of frequency hopping sequences that results in optimized network performance may then be used for assigning frequency hopping sequences to new or existing connections (e.g., cellular calls) within a corresponding cell.
Abstract:
The present invention relates generally to the problem of determining the identity of a cell for e.g. cell handoff or automatic frequency planning, and more particularly to the problem of determining the true identity of a cell when only the transmission frequency and a non-unique identity code is known. A candidate list is created for each cell. This candidate list is created based on a function of various elements e.g. distance, transmission power, cell type, and antenna placement. The cells are then ranked on the candidate list based on this function. When a particular frequency/code combination is detected, the candidate list is then consulted, and the highest ranking cell with the same frequency/code combination is chosen as being the signal source. In an alternative embodiment the neighbor cell list is used to create the candidate list. If there are no matches on this list for the detected frequency/code combination, then the neighbors of the cells on the candidate list are also added to the candidate list which is then checked for a match.
Abstract:
In a telecommunications network, a method and apparatus for allocating channels makes signal quality measurements for channels that are in use or available for use and for channels that may become available for use. Already selected channels (i.e., channels in use or available for use) that exhibit poor signal quality characteristics are exchanged with candidate channels (i.e., channels that may become available for use) that exhibit better signal quality characteristics to thereby improve the overall signal quality of the network.