Abstract:
A system having improved trapping force for acoustophoresis is described where the trapping force is improved by manipulation of the frequency of the ultrasonic transducer. The transducer includes a ceramic crystal. The crystal may be directly exposed to fluid flow. The crystal may be air backed, resulting in a higher Q factor.
Abstract:
Methods for introducing foreign nucleic acids into cells, such as by performing transfection / transduction, using acoustic processes are disclosed herein. The foreign DNA/RNA and the cells are co-located in a multi-dimensional acoustic standing wave, or are co-located by acoustic streaming.
Abstract:
A system having improved trapping force for acoustophoresis is described where the trapping force is improved by manipulation of the frequency of the ultrasonic transducer. The transducer includes a ceramic crystal. The crystal may be directly exposed to fluid flow. The crystal may be air backed, resulting in a higher Q factor.
Abstract:
Methods for introducing foreign nucleic acids into cells, such as by performing transfection / transduction, using acoustic processes are disclosed herein. The foreign DNA/RNA and the cells are co-located in a multi-dimensional acoustic standing wave, or are co-located by acoustic streaming.
Abstract:
A series of multi-dimensional acoustic standing waves is set up inside a growth volume of a bioreactor. The acoustic standing waves are used to hold a cell culture in place as a nutrient fluid stream flows through the cell culture. Biomolecules produced by the cell culture are collected by the nutrient fluid stream and separated downstream of the cell culture.
Abstract:
A system having improved trapping force for acoustophoresis is described where the trapping force is improved by manipulation of the frequency of the ultrasonic transducer. The transducer includes a ceramic crystal. The crystal may be directly exposed to fluid flow. The crystal may be air backed, resulting in a higher Q factor.
Abstract:
A system having improved trapping force for acoustophoresis is described where the trapping force is improved by manipulation of the frequency of the ultrasonic transducer. The transducer includes a ceramic crystal. The crystal may be directly exposed to fluid flow. The crystal may be air backed, resulting in a higher Q factor.