Abstract:
Described herein are methods useful for incorporating one or more adaptors and/or nucleotide tag(s) and/or barcode nucleotide sequence(s) one, or typically more, target nucleotide sequences. In particular embodiments, nucleic acid fragments having adaptors, e.g., suitable for use in high-throughput DNA sequencing are generated. In other embodiments, information about a reaction mixture is encoded into a reaction product. Also described herein are methods and kits useful for amplifying one or more target nucleic acids in preparation for applications such as bidirectional nucleic acid sequencing. In particular embodiments, methods of the invention entail additionally carrying out bidirectional DNA sequencing. Also described herein are methods for encoding and detecting and/or quantifying alleles by primer extension.
Abstract:
In certain embodiments, the invention provides methods and devices for assaying single particles in a population of particles, wherein at least two parameters are measured for each particle. One or more parameters can be measured while the particles are in the separate reaction volumes. Alternatively or in addition, one or more parameters can be measured in a later analytic step, e.g., where reactions are carried out in the separate reaction volumes and the reaction products are recovered and analyzed. In particular embodiments, one or more parameter measurements are carried out "in parallel," i.e., essentially simultaneously in the separate reaction volumes.
Abstract:
[0277] In certain embodiments, the present invention provides amplification methods in which nucleotide tag(s) and, optionally, a barcode nucleotide sequence are added to target nucleotide sequences. In other embodiments, the present invention provides a microfluidic device that includes a plurality of first input lines and a plurality of second input lines. The microfluidic device also includes a plurality of sets of first chambers and a plurality of sets of second chambers. Each set of first chambers is in fluid communication with one of the plurality of first input lines. Each set of second chambers is in fluid communication with one of the plurality of second input lines. The microfluidic device further includes a plurality of first pump elements in fluid communication with a first portion of the plurality of second input lines and a plurality of second pump elements in fluid communication with a second portion of the plurality of second input lines.
Abstract:
In certain embodiments, the present invention provides amplification methods in which nucleotide tag(s) and, optionally, a barcode nucleotide sequence are added to target nucleotide sequences. In other embodiments, the present invention provides a microfluidic device that includes a plurality of first input lines and a plurality of second input lines. The microfluidic device also includes a plurality of sets of first chambers and a plurality of sets of second chambers. Each set of first chambers is in fluid communication with one of the plurality of first input lines. Each set of second chambers is in fluid communication with one of the plurality of second input lines. The microfluidic device further includes a plurality of first pump elements in fluid communication with a first portion of the plurality of second input lines and a plurality of second pump elements in fluid communication with a second portion of the plurality of second input lines.
Abstract:
In certain embodiments, the invention provides methods and devices for assaying single particles in a population of particles, wherein at least two parameters are measured for each particle. One or more parameters can be measured while the particles are in the separate reaction volumes. Alternatively or in addition, one or more parameters can be measured in a later analytic step, e.g., where reactions are carried out in the separate reaction volumes and the reaction products are recovered and analyzed. In particular embodiments, one or more parameter measurements are carried out "in parallel," i.e., essentially simultaneously in the separate reaction volumes.
Abstract:
This invention provides a technology for isolating nucleic acids from wax-embedded samples that is superior to the current state of the art. Standard protocols with this objective typically comprise dissolving the wax-embedded sample in an organic solvent, extracting nucleic acids from the organic solvent into an aqueous buffer, and isolating the nucleic acids from the aqueous buffer. The technology described here includes using hexadecane as the solvent to dissolve the sample, precipitating and washing the extracted nucleic acids, and dissolving the nucleic acids in a lysis buffer that includes NP40 and SDS. By implementing the reagents and techniques described in this disclosure, the user can obtain a product that has better yield, less degradation, and contains more unique mRNA transcripts for subsequent sequencing and analysis.
Abstract:
Disclosed herein is a method and kit thereof for isolating nucleic acids from wax-embedded samples using hexadecane as the solvent to dissolve the sample, precipitating and washing the extracted nucleic acids using ethanol, and dissolving the nucleic acids in a lysis buffer that includes NP40 and SDS. By implementing the reagents and techniques described in this disclosure, the user can obtain a product that has better yield, less degradation, and contains more unique mRNA transcripts for subsequent sequencing and analysis.