Abstract:
The present invention provides amplification-based methods for detection of genotype, mutations, and/or aneuploidy. These methods have broad applicability, but are particularly well-suited to detecting and quantifying target nucleic acids in free fetal DNA present in a maternal bodily fluid sample.
Abstract:
The present invention provides for determining relative copy number difference for one or more target nucleic acid sequences between a test sample and a reference sample or reference value derived therefrom. The methods facilitate the detection of copy number differences less than 1.5-fold.
Abstract:
The present invention provides amplification-based methods for detection of genotype, mutations, and/or aneuploidy. These methods have broad applicability, but are particularly well-suited to detecting and quantifying target nucleic acids in free fetal DNA present in a maternal bodily fluid sample.
Abstract:
The present invention provides assay methods that increase the number of samples and/or target nucleic acids that can be analyzed in a single assay.
Abstract:
The present invention provides methods for selectively enriching a biological sample for short nucleic acids, such as fetal DNA in a maternal sample or apoptic DNA in a biological sample from a cancer patient and for subsequently analyzing the short nucleic acids for genotype, mutation, and/or aneuploidy.
Abstract:
A method of adjusting amplification curves in a PCR experiment includes receiving a plurality of amplification curves for a sample and computing a first parameter for each of the plurality of amplification curves. The method also includes computing a second parameter for each of the plurality of amplification curves and computing a third parameter using at least a portion of the first or second parameters. The method further includes computing an offset for each of the plurality of amplification curves. The offset is a function of the first parameter and the third parameter. Moreover, the method includes adjusting at least one of the plurality of amplification curves by subtracting the offset.
Abstract:
The present invention provides assay methods that increase the number of samples and/or target nucleic acids that can be analyzed in a single assay.
Abstract:
The present invention provides methods for selectively enriching a biological sample for short nucleic acids, such as fetal DNA in a maternal sample or apoptic DNA in a biological sample from a cancer patient and for subsequently analyzing the short nucleic acids for genotype, mutation, and/or aneuploidy.
Abstract:
The present invention methods and systems for determining copy number variation of a target polynucleotide in a genome of a subject including amplification based techniques. Methods can include pre-amplification of the sample followed by distribution of sample and a plurality of reaction volumes, quantitative detection of a target polynucleotide and a reference polynucleotide, and analysis so as to determine the relative copy number of the target polynucleotide sequence in the genome of the subject.