Abstract:
The present invention relates to a laser diode with high efficiency and high eye safety. The object of the present invention is to specify a light source with high efficiency and high eye safety at the same time. For this purpose, the active layer (10), the first outer layer (14), the first waveguide layer (12), the second waveguide layer (16) and the second outer layer (18) are intended to be designed such that 0.01 µm = dwL = 1.0 µm and ?n = 0.04, where dwL is the sum of the layer thickness of the first waveguide layer (12), the layer thickness of the active layer (10) and the layer thickness of the second waveguide layer (16), and ?n is a maximum of the refractive-index difference between the first outer layer (14) and the first waveguide layer (12), and the refractive-index difference between the second waveguide layer (16) and the second outer layer (18).
Abstract:
The present invention relates to a diode laser and to a laser resonator for a diode laser having improved lateral beam quality without using an external resonator. The present invention in particular relates to a broad area laser having high power output. It is the aim of the present invention to provide a diode laser and a laser resonator for a diode laser, which has high lateral beam quality at high power output, requires little adjustment effort and is inexpensive to produce. The laser resonator according to the invention comprises a gain section (GS), a first planar Bragg reflector (DBR1) and a second planar Bragg reflector (DBR2), wherein the gain section (GS) has a trapezoidal design and the first planar Bragg reflector (DBR1) is arranged on a first base side of the trapezoidal gain section (GS) and the second planar Bragg reflector (DBR2) is arranged on the opposing base side of the trapezoidal gain section (GS), wherein the width (D1) of the first planar Bragg reflector (DBR1) differs from the width (D2) of the second planar Bragg reflector (DBR2).
Abstract:
Die vorliegende Erfindung betrifft einen Diodenlaser und Laserresonator für einen Diodenlaser mit verbesserter lateralen Strahlqualität ohne Verwendung eines externen Resonators, insbesondere betrifft die vorliegende Erfindung einen Breitstreifenlaser mit hohen Ausgangsleistungen. Es ist Aufgabe der vorliegenden Erfindung, einen Diodenlaser und einen Laserresonator für einen Diodenlaser anzugeben, der bei hohen Ausgangsleistungen eine hohe laterale Strahlqualität aufweist, einen geringen Justageaufwand erfordert und preiswert herstellbar ist. Der erfindungsgemäße Laserresonator weist eine Gewinnsektion (GS), einen ersten planaren Bragg Reflektor (DBR1) und einen zweiten planaren Bragg Reflektor (DBR2) auf, wobei die Gewinnsektion (GS) trapezförmig ausgebildet ist und der erste planare Bragg Reflektor (DBR1) an einer ersten Grundseite der trapezförmigen Gewinnsektion (GS) und der zweite planare Bragg Reflektor (DBR2) an der gegenüberliegenden Grundseite der trapezförmigen Gewinnsektion (GS) angeordnet sind, wobei sich die Breite (D1) des ersten planaren Bragg Reflektors (DBR1) von der Breite (D2) des zweiten planaren Bragg Reflektors (DBR1) unterscheidet.
Abstract:
The component has a functional layer (2) made of semiconductor material, and a carrier substrate (1) made of a material, which has a thermal conductivity of 50 watts per meter Kelvin. A solder (3) is arranged at the carrier substrate, and protects the functional layer. A relaxation layer (4, 4a) is arranged between the functional layer and the solder and/or between the solder and the carrier substrate, where the relaxation layer has a thickness of micrometers, and is made of gold. An independent claim is also included for a method for manufacturing a semiconductor component.
Abstract:
The arrangement has optical components (1) arranged on a base body (6). A printed circuit board (7) is fastened at a side of the components on the base body. The board includes units for external power supply line and conducting lines (8) with contact connection to the components. The base body is made from material with high heat conductivity and includes ridges and cavities at its upper surface for mounting the components.
Abstract:
Layered materials comprise different, coupled refraction indices and at least one layer contains active regions and waveguide regions respectively with at least one transformation zone. Active regions are so coupled via transformation zones that radiation from active regions is guided and split in specified manner.Active regions, coupled by transformation regions, contain at least partial regions without grid structure, or with not more than one simple grid structure. Preferably, active region are in form of specified laser structures. Independent claims are included for method for coherent coupling of active regions in opto-electronic components.