Abstract:
An electrodeless microwave discharge lamp includes a substantially sealed microwave cavity, an envelope disposed within the sealed cavity, the envelope containing a fill which emits light when excited by microwave energy, and means for circulating air inside the sealed microwave cavity. For example, the means for circulating air includes a ceramic reflector inside the cavity with defined air flow channels. The lamp may further include a fan for moving air through the defined air flow channels. For example, the envelope is adapted to rotate during operation and blades are mounted on the stem of the bulb inside the sealed cavity. A sealed light distribution system includes a hollow light pipe having an opening at one end and an annular ring of elastomeric material secured to the open end of the light pipe. When used with a lamp with a reflector, the reflector is received in the opening of the ring and the ring forms a seal around the outside of the reflector. Another light distribution system includes a multi layer light conduit having at least two full layers formed by a single spiral wound plastic sheet. Another light distribution system includes a reflector positioned to receive light from a light source to transform at least some of the light into shallow angle light relative to a light emitting wall of an enclosure. The light is distributed through the enclosure by specular reflection of the shallow angle light.
Abstract:
Various lamp systems are disclosed which effectively utilize light from an aperture lamp (3). Lamp systems are respectively configured to perform various types of light recapture including etendue recycling, polarization recycling, and/or color recycling. Various novel optical elements are disclosed including an electrodeless light bulb (5) with an integral lens (9), a molded quartz ball lens with an integral flange, a molded quartz CPC with an integral flange, a truncated CPC, and a segmented CPC. Various novel optical systems are disclosed including systems which perform angle selection and/or etendue selection.
Abstract:
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes a bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70 % efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.
Abstract:
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semicylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes a bulb encased in a reflective ceramic cup with a preformed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70 % efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.
Abstract:
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes a bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70 % efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.
Abstract:
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes a bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70 % efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.
Abstract:
A light emitting device comprised of an electrodeless envelope (19') which bears a light reflecting covering (10') around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture (12'). The light emitting device may further comprise an optical element (72) spaced from the envelope (19') and configured to reflect an unwanted component of light which exited the envelope (19') back into the envelope (19') through the aperture (12') in the light reflecting covering (10').
Abstract:
A light emitting device comprised of an electrodeless envelope (19') which bears a light reflecting covering (10') around a first portion which does not crack due to differential thermal expansion and which has a second portion which comprises a light transmissive aperture (12'). The light emitting device may further comprise an optical element (72) spaced from the envelope (19') and configured to reflect an unwanted component of light which exited the envelope (19') back into the envelope (19') through the aperture (12') in the light reflecting covering (10').