Abstract:
Various lamp systems are disclosed which effectively utilize light from an aperture lamp (3). Lamp systems are respectively configured to perform various types of light recapture including etendue recycling, polarization recycling, and/or color recycling. Various novel optical elements are disclosed including an electrodeless light bulb (5) with an integral lens (9), a molded quartz ball lens with an integral flange, a molded quartz CPC with an integral flange, a truncated CPC, and a segmented CPC. Various novel optical systems are disclosed including systems which perform angle selection and/or etendue selection.
Abstract:
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes a bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70 % efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.
Abstract:
An integrated electrodeless lamp (11) includes a lamp housing (13) defining two or more compartments (33, 35, 37) housing components of the lamp (11), wherein at least one compartment (33) provides an opening (17) in the lamp housing (13), a cover (15) fitted to the lamp housing (13), and an optics assembly (19) positioned in the opening (17) in the lamp housing (13), wherein the lamp housing (13), the cover (15), and the optics assembly (19) provide an RF sealed system. The lamp components include an RF source providing RF energy for the lamp (11), an aperture bulb (51) assembly including an electrodeless envelope (54) containing a discharge forming fill which emits light when excited by RF energy, andan excitation structure for coupling RF energy from the RF source to the discharge forming fill. The optics assembly (19) may be mounted in the opening (17) in the lamp housing (13) with a twist lock mounting structure. The application also discloses solid state oscillators comprising either a turning circuit having a pair of complementary varactor diodes or a solid state active element with at least two die which may be comprised in the RF source of such an integrated electrodeless lamp (11).
Abstract:
Various projection systems are described with improved performance. A projection system utilizes negative distortion together with a pre-compensated light source to reduce spill. A projection system utilizes a single angle transforming optical element positioned between an imager and a light source to increase throughput. A two panel projection system utilizes both polarities to increase light output. A projection system utilizes a three segment color wheel with a small white bias in each segment to reduce color breakup. A projection system utilizes a digital micro-mirror device and recycles OFF state light. A projection system utilizes two color wheels to improve recycling of light. A two panel projection system utilizes a color wheel which transmits a deficient color band and time sequences the other bands while reflecting the unused light back to the light source for recycling.
Abstract:
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
Abstract:
An integrated high brightness electrodeless lamp includes a lamp base defining two or more compartments housing components of the lamp, wherein at least one compartment provides an opening in the lamp base, a cover fitted to the lamp base, and an optics assembly positioned in the opening in the lamp base, wherein the lamp base, the cover, and the optics assembly provide an RF sealed system. The lamp components include an RF source providing RF energy for the lamp, an aperture bulb assembly including an electrodeless envelope containing a discharge forming fill which emits light when excited by RF energy, and an excitation structure for coupling RF energy from the RF source to the discharge forming fill. The optics assembly may be mounted in the opening in the lamp base with a twist lock mounting structure.
Abstract:
A discharge lamp bulb includes a light transmissive envelope and at least one conductive fiber disposed on a wall of the envelope, where the fiber has a thickness of less than 100 microns. The lamp may be either electrodeless or may include internal electrodes. Suitable materials for the fiber(s) include but are not limited to carbon, silicon carbide, aluminum, tantalum, molybdenum, platinum, and tungsten. Silicon carbide whiskers and platinum coated silicon carbide fibers may also be used. The fiber(s) may be aligned with the electrical field, at least during starting. The lamp preferably further includes a protective material covering the fiber(s). For example the protective material may be a sol gel deposited silica coating. Noble gases inside the bulb at pressures in excess of 300 Torr can be reliably ignited at applied electric field strengths of less than 4x10 V/m. Over 2000 Torr xenon, krypton, and argon respectively achieve breakdown with an applied field of less than 3x10 V/m.
Abstract:
An inductively coupled electrodeless lamp has a pair of excitation coils positioned exterior to an envelope or bulb. The pair of excitation coils are positioned and driven in a manner to produce at least one moving ring-shaped electric field within the envelope. The moving ring electric field results in formation of a correspondingly moving ring of plasma discharge within the envelope. The movement of the electric field results in a more uniformly hot plasma discharge volume within the envelope, thereby facilitating emission or re-radiation of photons. The movement of the ring-shaped electric field (and the corresponding plasma discharge) can be rotational, oscillating, wobbling, or switching. The nature of the movement depends upon such factors as coil geometry and orientation and coil excitation (driving) technique. In some embodiments, the pair of excitation coils are driven by quadrature techniques (e.g., either phase quadrature, frequency quadrature, or amplitude quadrature). Differing coil geometries and orientations are taught.
Abstract:
A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semicylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes a bulb encased in a reflective ceramic cup with a preformed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70 % efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.