Abstract:
An apparatus to introduce a reagent to reduce nitrogen oxides in flue gas including: nozzles mounted to a passage for the flue gas, wherein the nozzles are mounted downstream of a SNCR system and upstream of a SCR system, wherein the nozzles are mounted on one or more walls of the passage and are configured to inject a pressurized fluid into the flue gas; a source of the pressurized fluid which is in fluid communication with the nozzles such that the pressurized fluid flows to the nozzles; a source of a NOx reducing reagent and a mixing device which mixes the reagent with the pressurized fluid such that the pressurized fluid flowing to the nozzles includes the reagent.
Abstract:
A combustion system (200) is provided. The combustion system (200) includes a combustion zone (220) including a burner for converting a fuel, under fuel rich conditions, to a flue gas, an intermediate staged air inlet (232) downstream from the combustion zone for supplying intermediate staged air to the flue gas and producing fuel lean conditions, and a reburn zone (224) downstream from the intermediate staged air inlet for receiving the flue gas.
Abstract:
Embodiments of the invention can include systems and methods for facilitating varying coal pipes for a pulverized coal burner. In one embodiment, a method for improving operation of a pulverized coal burner (600) is characterised by at least one coal pipe (604) having an inner diameter (608), and an outer diameter (604). The method can include installing at least one sleeve (602) or at least one liner within the coal pipe (604) between the inner (608) and outer diameter of the coal pipe (604), wherein velocity of a primary air and pulverized coal mixture is increased in an upstream portion of the coal pipe. The method can also include reducing the at least one sleeve (602) or liner, wherein velocity (Vexit) of the primary air and pulverized coal mixture is reduced in a downstream portion of the coal pipe.
Abstract:
Ein oder mehrere Lichtquellen (108, 110) emittieren Licht innerhalb erster, zweiter und dritter Wellenlängenbereiche durch Abgas (102). Die ersten und zweiten Wellenlängenbereiche sind durch erste und zweite unterschiedliche Absorptionswellenlängenbereiche eines Hintergrundgases charakterisiert. Der dritte Wellenlängenbereich ist durch einen Absorptionswellenlängenbereich eines interessierenden Gases charakterisiert. Wenigstens ein Teil des Lichts innerhalb des ersten, zweiten und dritten Wellenlängenbereichs wird von dem Abgas absorbiert, so dass dadurch modifiziertes Licht bereitgestellt wird, das durch erste, zweite und dritte Absorptionswellenlängenbereiche charakterisiert ist. Ein oder mehrere Detektoren (120, 122) empfangen das modifizierte Licht. Ein Verarbeitungssubsystem bestimmt eine Temperatur des Abgases basierend auf dem modifizierten Licht, charakterisiert durch die ersten und zweiten Absorptionswellenlängenbereiche und eine Konzentration des Gases von Interesse basierend auf dem modifizierten Licht, charakterisiert durch den dritten Absorptionswellenlängenbereich und der Temperatur des Abgases.
Abstract:
A combustion system (200) is provided. The combustion system (200) includes a combustion zone (220) including a burner for converting a fuel, under fuel rich conditions, to a flue gas, an intermediate staged air inlet (232) downstream from the combustion zone for supplying intermediate staged air to the flue gas and producing fuel lean conditions, and a reburn zone (224) downstream from the intermedia te staged air inlet for receiving the flue gas.
Abstract:
Ein Impulsdetonations-Kohlebrenner (40) umfasst einen Brennerkörper (44) mit einem Einlass (46) und einem Auslass (47, 92) sowie ein Brennstoffeinführungssystem (54), das mit dem Einlass (46) des Brennerkörpers (44) gekoppelt ist. Das Brennstoffeinführungssystem (54) ist so konfiguriert und angeordnet, dass es mindestens einen Brennstoff in den Brennerkörper (44) einführt. Eine Impulsdetonationsvorrichtung (80) ist betriebsmäßig mit dem Brennerkörper (44) gekoppelt. Die Impulsdetonationsvorrichtung (80) ist so konfiguriert und angeordnet, dass sie eine Impulsdetonationswelle in den Brennerkörper einleitet (44), um mindestens einen Brennstoff zu entzünden.
Abstract:
A pulse detonation coal burner has a burner body 44 with an inlet 46, an outlet 47, and a fuel introduction system 54 coupled to the burner body inlet. The fuel introduction system supplies at least one fuel into the burner body, and a pulse detonation device 80 is coupled to the burner body 44 and in use provides a pulse detonation wave into the burner body 44 to ignite the at least one fuel. The pulse detonation coal burner can be utilized in a coal burning furnace/boiler arrangement (4 fig 1), and the coal may be pulverized and supplied from a pulverizing device (70 fig 1). The coal burner may also include a swirler / spin vanes 65, 66, which impart a swirl to pulverized fuel and air mixture entering the furnace / boiler.
Abstract:
A method for reducing the emissions from combustion gases 14, 16 from a combustion process comprises injecting a hydro-carbon based reducing agent into the combustion gases and directing the gases through a selective catalyst reduction (SCR) system. Preferably, the reducing agent comprises a saturated or unsaturated hydrocarbon, alcohol or ketone and is mixed with a carrier gas, which may be a portion of the combustion gases, to vaporize the reducing agent. A combustion chamber exhaust system is also provided including a first transport line 54 configured to extract a portion of the combustion gases and a vaporizer chamber 70 configured to form a mixture of vaporised reducing agent and exhaust gas. A second transport line 88 channels the mixture to an agent injection grid (AIG) 40 positioned upstream from an SCR system 28, the SCR comprising a catalytic bed 30 configured to facilitate reducing NOx within the combustion gases.
Abstract:
An improved gas flow injector has been developed for use in a combustion system. The gas flow injector has an inner nozzle with tubular configuration for directing a first gas stream to a location distal to the gas flow injector. The inner nozzle has an outlet end portion and a longitudinal central axis. Disposed about the inner nozzle is an outer nozzle having a tubular configuration, for directing a second gas stream to a location proximal to the gas flow injector. A diverter is mounted to the outlet end portion of the inner nozzle and extends at least partially into the second gas stream. The diverter has a surface disposed at an acute angle relative to the longitudinal central axis of the inner nozzle to redirect at least a portion of the second gas stream in a direction transverse to the longitudinal central axis. Also disclosed is a method of injecting a gas into a combustion system using the gas flow injector of this invention.