Abstract:
PROBLEM TO BE SOLVED: To provide a hinge used with a dual axis micromirror such as an MEMS array and a parallel plate electrostatic operation, that allows for a compliant torsional rotation while simultaneously restricting net vertical and horizontal displacement. SOLUTION: A circular mirror (12) is connected to a gimbal (44) at opposing, but at locations (36) and (37) deviated from the center axis with compound longitudinal hinges (40) and (42). COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
One or more cavities are formed in the bonding surfaces of one, all, or s ome of the elements to be bonded. These cavities serve as receptacles for th e bonding material and are where the bonds are localized. The cavities are o f sufficient size and shape so that their volume is greater than the volume of bonding material forming the bond. This ensures that when the elements ar e brought into contact with one another to mate, the bonding material, which can flow prior to solidifying into a bond, will flow into the cavities and will not impede the separation of the parts. This allows the parts to be mat ed with nominally zero separation. Once solidified, the bonding material for ms a localized bond inside each cavity. Different cavity shapes, such as, re ctangular, circular, or any other shape that can be injected or filled with adhesive material may be used.
Abstract:
In a folded three-dimensional free-space optical switch including a set of fibers and an optical system for producing collimated beamlets aligned to intersect an array of dual axis micromirrors of coplanar input and output mirror elements, and a folding mirror, the input and output micromirrors are arranged in a pattern wherein either the input or output mirror set is disposed along an annulus and wherein the complementary output or input mirror set is disposed within the annulus in order to globally minimize maximum tilt angles for a two-dimensional locus of tilt angles of the micromirror set. The beamlets are routed from assigned input fibers to corresponding input moveable mirrors to assigned output fibers via the static folding mirror and corresponding output moveable mirrors.
Abstract:
In a folded three-dimensional free-space optical switch including a set of fibers and an optical system for producing collimated beamlets aligned to intersect an array of dual axis micromirrors of coplanar input and output mirror elements, and a folding mirror, the input and output micromirrors are arranged in a pattern wherein either the input or output mirror set is disposed along an annulus and wherein the complementary output or input mirror set is disposed within the annulus in order to globally minimize maximum tilt angles for a two-dimensional locus of tilt angles of the micromirror set. The beamlets are routed from assigned input fibers to corresponding input moveable mirrors to assigned output fibers via the static folding mirror and corresponding output moveable mirrors.
Abstract:
In a folded three-dimensional free-space optical switch including a set of fibers and an optical system for producing collimated beamlets aligned to intersect an array of dual axis micromirrors of coplanar input and output mirror elements, and a folding mirror, the input and output micromirrors are arranged in a pattern wherein either the input or output mirror set is disposed along an annulus and wherein the complementary output or input mirror set is disposed within the annulus in order to globally minimize maximum tilt angles for a two-dimensional locus of tilt angles of the micromirror set. The beamlets are routed from assigned input fibers to corresponding input moveable mirrors to assigned output fibers via the static folding mirror and corresponding output moveable mirrors.
Abstract:
In a gimbaled micromachined micromirror array optimized for parallel-plate electrostatic operation, longitudinal-type gimbal hinge elements are provided in which a plurality of torsional longitudinal hinge elements are arranged in an array parallel to the axis of rotation and which are linked together by rigid lateral brace sections. In primary embodiment the hinge elements are arranged in a double gimbal configuration. Specific embodiments of the hinge elements are simple longitudinal, compound longitudinal, stacked simple longitudinal, and stacked compound longitudinal. The longitudinal hinges may be used with various types of mirrors including circular or rectilinear, recessed or nonrecessed, where the hinges are connected in either a symmetric or asymmetric configuration relative to one another, as hereinafter illustrated by way of a subset of examples. A preferred embodiment of a mirror structure suitable for an array structure according to the invention is a nonstacked compound longitudinal hinge symmetrically connected to a circular nonrecessed electrostatically-actuatable parallel plate mirror within a substantially circular ring hinged in substantially the same way to form a double gimbaled structure.
Abstract:
A MEMS-based mirror is provided with trenches between adjacent electrodes in order to be able to withstand relatively high applied voltages, and thus has a substantially reduced exposure to uncontrolled surface potentials. The MEMS-based mirror, thus avoids voltage drifts and has an improved mirror position stability. The trench dimensions are selected such that the voltage applied between each adjacent pair of electrodes stays within predefined limits. An insulating layer, such as silicon dioxide, electrically isolates each pair of adjacent electrodes. Each insulting layer extends partially above an associated trench and is characterized by the same height and width dimensions.
Abstract:
One or more cavities are formed in the bonding surfaces of one, all, or some of the elements to be bonded. These cavities serve as receptacles for the bonding material and are where the bonds are localized. The cavities are of sufficient size and shape so that their volume is greater than the volume of bonding material forming the bond. This ensures that when the elements are brought into contact with one another to mate, the bonding material, which can flow prior to solidifying into a bond, will flow into the cavities and will not impede the separation of the parts. This allows the parts to be mated with nominally zero separation. Once solidified, the bonding material forms a localized bond inside each cavity. Different cavity shapes, such as, rectangular, circular, or any other shape that can be injected or filled with adhesive material may be used.
Abstract:
A MEMS-based mirror is provided with trenches between adjacent electrodes in order to be able to withstand relatively high applied voltages, and thus has a substantially reduced exposure to uncontrolled surface potentials. The MEMS-based mirror, thus avoids voltage drifts and has an improved mirror position stability. The trench dimensions are selected such that the voltage applied between each adjacent pair of electrodes stays within predefined limits. An insulating layer, such as silicon dioxide, electrically isolates each pair of adjacent electrodes. Each insulting layer extends partially above an associated trench and is characterized by the same height and width dimensions.
Abstract:
A MEMS-based mirror is provided with trenches between adjacent electrodes in order to be able to withstand relatively high applied voltages, and thus has a substantially reduced exposure to uncontrolled surface potentials. Th e MEMS-based mirror, thus avoids voltage drifts and has an improved mirror p osition stability. The trench dimensions are selected such that the voltage applied between each adjacent pair of electrodes stays within predefined lim its. An insulating layer, such as silicon dioxide, electrically isolates eac h pair of adjacent electrodes. Each insulting layer extends partially above an associated trench and is characterized by the same height and width dimen sions.