Abstract:
PROBLEM TO BE SOLVED: To measure an analyte concentration in a human or animal body by an implantable electrode system precisely. SOLUTION: The implantable electrode system comprises a first and a second measuring electrode for determining measuring signals which each contain information concerning the analyte concentration to be measured, whereby the first measuring electrode has a first measuring sensitivity that is adapted to a first concentration range of the analyte, and the second measuring electrode has a second measuring sensitivity that differs from the first measuring sensitivity and is adapted to a second concentration range of the analyte. Further an apparatus and a method for measuring analyte concentration by means of an electrode system of this type are provided. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
The invention relates to an electrode system for measuring the concentration of an analyte under in-vivo conditions, comprising a counter-electrode (2) having an electrical conductor (2a), a working electrode (1) having an electrical conductor (1a) on which an enzyme layer (5) containing immobilized enzyme molecules for catalytic conversion of the analyte is arranged, and a diffusion barrier that slows the diffusion of the analyte from body fluid surrounding the electrode system to enzyme molecules down. The invention provides the enzyme layer (5) in the form of multiple fields that are arranged on the conductor (1a) of the working electrode (1 ) at a distance from each other.
Abstract:
The electrode system comprises a counter electrode (2) with an electric conductor, a working electrode (1) with an electric conductor on which an enzyme layer is arranged that consists of immobilized enzyme molecules for catalytic transformation of analytes, and a diffusion brake, which slows down the diffusion of the analytes from body fluid surrounding the electrode system, to enzyme molecules. The enzyme layer is formed in the form of several fields that are arranged to each other on the conductor of the working electrode in an interval. The electrode system comprises a counter electrode (2) with an electric conductor, a working electrode (1) with an electric conductor on which an enzyme layer is arranged that consists of immobilized enzyme molecules for catalytic transformation of analytes, and a diffusion brake, which slows down the diffusion of the analytes from body fluid surrounding the electrode system, to enzyme molecules. The enzyme layer is formed in the form of several fields that are arranged to each other on the conductor of the working electrode in an interval. The two of the fields of the enzyme layer of 5 mm are removed from one another. An interval between adjoining fields of the enzyme layer is 0.3 mm. The fields of the enzyme layer of 2 mm extend itself in two directions vertical to each other. The diffusion brake is formed as a layer covering the enzyme layer. The enzyme cooperates with a catalytic redox mediator that reduces or prevents an oxygen dependence of the catalytic conversion of the analytes. The catalytic redox mediator transfers hydrogen peroxide and causes a direct electron transfer. The electrode system is bent without breaking around 90[deg] . The working electrode comprises a spacer that is arranged by the conductor over the enzyme layer. The spacer covers the working electrode and the counter electrode as solid layer. The electric conductors of the working electrode and the counter electrode are arranged on a substrate (4). The conductor of the working electrode has narrow positions between the enzyme layer fields and the conductor of the counter electrode has contour following the progress of the conductor of the working electrode. An independent claim is included for a sensor with electrode system.
Abstract:
Sistema de electrodos para medir la concentración de un analito bajo condiciones in vivo, que comprendeun contraelectrodo (2) que presenta un conductor eléctrico (2a), un electrodo de trabajo (1) que presenta unconductor eléctrico (1a) sobre el que se aplica una capa de enzima (5) que contiene moléculas inmovilizadas deenzima para la conversión catalítica del analito, y una barrera de difusión (8) que enlentece la difusión del analitodesde el líquido corporal circundante al sistema de electrodos hasta las moléculas de enzima, caracterizado porquela capa de enzima (5) se ha diseñado en forma de múltiples campos que se disponen sobre el conductor (1a) delelectrodo de trabajo (1) separados por cierta distancia
Abstract:
La presente invención se refiere a un sistema de electrodo para medir la concentración de un analito bajo condiciones in-vivo, que comprende un electrodo contador (2) que tiene un conductor eléctrico (2a), un electrodo de trabajo (1) que tiene un conductor eléctrico (la) en el cual se arregla una capa enzimática (5) que contiene moléculas enzimáticas inmovilizados para conversión catalítica del analito, y una barrera de difusión que reduce la difusión del analito a partir de fluido corporal circundante el sistema de electrodo para disminuir las moléculas enzimáticas. La presente invención proporciona la capa enzimática (5) en la forma de campos múltiples que se arreglan en el conductor (la) del electrodo de trabajo (1) a una distancia entre sí.
Abstract:
Procedimiento para el control continuo de la concentración de un analito por determinación de su variación a lo largo del tiempo en el cuerpo vivo de un humano o un animal, en el que en puntos secuenciales de tiempo se toman valores de medición de una variable de medición correlacionada con la concentración deseada, como señal de medición (zt) y se determina la variación a lo largo del tiempo de la concentración a partir de la señal de medición como señal útil (yt) por medio de una calibración, en el que la determinación de la señal útil (yt) a partir de la señal de medición (zt) incluye un algoritmo de filtro en el dominio de tiempo, mediante el cual se reducen los errores de la señal utilizable resultantes del ruido contenido en la señal de medición, y el algoritmo de filtro comprende una operación en la que se pondera la influencia de un valor de medición actual sobre la señal utilizable por medio del factor de ponderación (V), caracterizado porque, durante el control continuo se determina un parámetro (σt) de variación de señal dependiente del tiempo, relacionado con el punto actual de tiempo, en base a variaciones de señal de la señal de medición detectada en relación cronológica íntima con la medición del valor de medición actual, de manera que el parámetro de variación de señal es una medición de las variaciones de señal de la señal de medición durante un periodo de tiempo que precede un valor de medición actual y se determina en base a valores de medición, incluyendo valores que han sido medidos menos de 30 minutos antes de la medición del valor actual, y el valor de ponderación es adaptado dinámicamente como función del parámetro de variación de señal determinado para el punto de tiempo de la medición actual, siendo variado el factor de ponderación en la dirección que la influencia del valor de medición actual es reducida con un aumento de la desviación estándar de la señal de medición.
Abstract:
Continuous monitoring of analytes, especially glucose, in humans and animals comprises producing a measured signal (z 1) related to a parameter which indicates the concentration of the analyte. The change in concentration with time is derived from this as a desired signal (y 1) using a filter algorithm in a time domain which allows errors in the desired signal to be reduced. The influence of actual measurements on the desired signal is used to derive a weighting factor. A signal fluctuation parameter is derived from actual measurements in a narrow time context and the weighting factor is modified in relation to the actual measurement at any given point in time. An independent claim is included for apparatus for carrying out the method using a sensor (12) which measures the parameter which indicates the concentration of the analyte.
Abstract:
A method for continuous monitoring of the concentration of an analyte by determining its change over time in the living body of a human or animal, in which at sequential points in time, measurement values of a measurement variable correlating with the desired concentration are measured as the measurement signal (z t) and the change over time of the concentration is determined from the measurement signal as the useful signal (y t) using a calibration, the determination of the useful signal (y t) from the measurement signal (z t) including a filter algorithm in the time domain, by which errors of the useful signal, which result from noise contained in the measurement signal, are reduced, and the filter algorithm including an operation in which the influence of an actual measurement value on the useful signal is weighted using a weighting factor (V). During the continuous monitoring, a signal variation parameter (.sigma.t) is determined on the basis of signal variations detected in close chronological relationship with the measurement of the actual measurement value. The weighting factor is dynamically adapted as a function of the signal variation parameter determined for the point in time of the actual measurement.
Abstract:
The invention relates to an implantable electrode system for measuring an analyte concentration in a human or animal body, comprising a first and a second measuring electrode (2, 3) for determining measuring signals which each contain information concerning the analyte concentration to be measured, whereby the first measuring electrode (2) has a first measuring sensitivity that is adapted to a first concentration range of the analyte, and the second measuring electrode (3) has a second measuring sensitivity that differs from the first measuring sensitivity and is adapted to a second concentration range of the analyte. The invention further relates to an apparatus and a method for measuring an analyte concentration by means of an electrode system of this type.