Abstract:
The present disclosure describes light conversion modules each having a single laser diode or multiple laser diodes. The light conversion modules can be particularly small in size (height and lateral footprint) and can overcome various challenges associated with the high optical power and heat emitted by laser diodes. In some implementations, the light conversion modules include glass phosphors, which, in some instances, can resist degradation caused by the optical power and/or heat generated by the laser diodes. In some instances, the light conversion modules include optical filters which, in some instances, can reduce or eliminate human eye-safety risk.
Abstract:
This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
Abstract:
An electrical-contact assembly includes electrical contacts with first and second electrical-contact surfaces on opposing sides of the assembly. The electrical-contact assembly is manufactured by a structurable process (e.g., photo-structurable process) and by electroplating. The first and second electrical-contact surfaces can be positioned with respect to each other with an accuracy, for example, of at least 5 microns. Further, the thickness of the electrical-contact assembly can be at most 17 microns in some cases. The electrical-contact assembly can include integrated active optoelectronic elements, overmolds, optical elements and non-transparent walls.
Abstract:
This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
Abstract:
One or more channels are provided in the surface of a conductive layer of a PCB substrate in an area on which a component is to be placed. The channels can help reduce or prevent shifting of the component during reflow soldering through surface tension/capillary forces of the solder paste material in the channels. Such channels also can be used, for example, by an image processing system to facilitate accurate positioning and/or alignment of the component. The image processing system can use the location of the channels alone, or in combination with other features such as a solder mask or other alignment marks, to position and/or align the component with high accuracy.
Abstract:
The method for manufacturing an object comprises the steps of (a) providing a wafer comprising a multitude of semi-finished objects; (b) separating said wafer into parts referred to as sub- wafers, at least one of said sub-wafers comprising a plurality of said semi-finished objects; (c) processing at least a portion of said plurality of semi-finished objects by subjecting said at least one sub-wafer to at least one processing step; and preferably also the step of (d) separating said at least one sub-wafer into a plurality of parts.
Abstract:
This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
Abstract:
The present disclosure describes broadband optical emission sources that include a stack of semiconductor layers, wherein each of the semiconductor layers is operable to emit light of a different respective wavelength; a light source operable to provide optical pumping for stimulated photon emission from the stack; wherein the semiconductor layers are disposed sequentially in the stack such that a first one of the semiconductor layers is closest to the light source and a last one of the semiconductor layers is furthest from the light source, and wherein each particular one of the semiconductor layers is at least partially transparent to the light generated by the other semiconductor layers that are closer to the light source than the particular semiconductor layer. The disclosure also describes various spectrometers that include a broadband optical emission device, and optionally include a tuneable wavelength filter operable to allow a selected wavelength or narrow range of wavelengths to pass through.
Abstract:
This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
Abstract:
One or more channels are provided in the surface of a conductive layer of a PCB substrate in an area on which a component is to be placed. The channels can help reduce or prevent shifting of the component during reflow soldering through surface tension/capillary forces of the solder paste material in the channels. Such channels also can be used, for example, by an image processing system to facilitate accurate positioning and/or alignment of the component. The image processing system can use the location of the channels alone, or in combination with other features such as a solder mask or other alignment marks, to position and/or align the component with high accuracy.