MULTIPLE LOW AND HIGH K GATE OXIDES ON SINGLE GATE FOR LOWER MILLER CAPACITANCE AND IMPROVED DRIVE CURRENT
    2.
    发明申请
    MULTIPLE LOW AND HIGH K GATE OXIDES ON SINGLE GATE FOR LOWER MILLER CAPACITANCE AND IMPROVED DRIVE CURRENT 审中-公开
    在单闸门上多个低K和高K门氧化物用于较低的电容和改进的驱动电流

    公开(公告)号:WO2007038237A3

    公开(公告)日:2007-07-26

    申请号:PCT/US2006036916

    申请日:2006-09-22

    Abstract: The present invention provides a semiconductor structure having at least one CMOS device in which the Miller capacitances, i-e., overlap capacitances, are reduced and the drive current is improved. The inventive structure includes a semiconductor substrate having at least one overlaying gate conductor, each of the at least one overlaying gate conductors has vertical edges; a first gate oxide located beneath the at least one overlaying gate conductor, the first gate oxide not extending beyond the vertical edges of the at least overlaying gate conductor; and a second gate oxide located beneath at least a portion of the at one overlaying gate conductor. In accordance with the present invention, the first gate oxide and the second gate oxide are selected from high k oxide-containing materials and low k oxide-containing materials, and the first gate oxide is higher k than the second gate oxide or vice-versa.

    Abstract translation: 本发明提供一种半导体结构,其具有至少一个CMOS器件,其中米勒电容,即重叠电容,并且驱动电流得到改善。 本发明的结构包括具有至少一个覆盖栅极导体的半导体衬底,所述至少一个覆盖栅极导体中的每一个具有垂直边缘; 位于所述至少一个覆盖栅极导体下方的第一栅极氧化物,所述第一栅极氧化物不延伸超过所述至少覆盖栅极导体的垂直边缘; 以及位于一个重叠栅极导体的至少一部分下方的第二栅极氧化物。 根据本发明,第一栅极氧化物和第二栅极氧化物选自含高K氧化物的材料和低K氧化物的材料,并且第一栅极氧化物比第二栅极氧化物高k,反之亦然 。

    3.
    发明专利
    未知

    公开(公告)号:DE102004013928A1

    公开(公告)日:2004-10-28

    申请号:DE102004013928

    申请日:2004-03-22

    Abstract: A trench isolation structure is formed in a substrate. One or more openings are formed in a surface of the substrate, and a liner layer is deposited at least along a bottom and sidewalls of the openings. A layer of doped oxide material is deposited at least in the openings, and the substrate is annealed to reflow the layer of doped oxide material. Only a portion near the surface of the substrate is removed from the layer of doped oxide material in the opening. A cap layer is deposited atop a remaining portion of the layer of doped oxide material in the opening.

    4.
    发明专利
    未知

    公开(公告)号:DE102004001099A1

    公开(公告)日:2004-07-22

    申请号:DE102004001099

    申请日:2004-01-05

    Abstract: A method of oxidizing a substrate having area of about 30,000 mm 2 or more. The surface is preferably comprised of silicon-containing materials, such as silicon, silicon germanium, silicon carbide, silicon nitride, and metal silicides. A mixture of oxygen-bearing gas and diluent gas normally non-reactive to oxygen, such as Ne, Ar, Kr, Xe, and/or Rn are ionized to create a plasma having an electron density of at least about 1 e12 cm -3 and containing ambient electrons having an average temperature greater than about 1 eV. The substrate surface is oxidized with energetic particles, comprising primarily atomic oxygen, created in the plasma to form an oxide film of substantially uniform thickness. The oxidation of the substrate takes place at a temperature below about 700° C., e.g., between about room temperature, 20° C., and about 500° C.

    6.
    发明专利
    未知

    公开(公告)号:DE102004001099B4

    公开(公告)日:2009-12-31

    申请号:DE102004001099

    申请日:2004-01-05

    Applicant: QIMONDA AG IBM

    Abstract: A method of oxidizing a substrate having area of about 30,000 mm 2 or more. The surface is preferably comprised of silicon-containing materials, such as silicon, silicon germanium, silicon carbide, silicon nitride, and metal silicides. A mixture of oxygen-bearing gas and diluent gas normally non-reactive to oxygen, such as Ne, Ar, Kr, Xe, and/or Rn are ionized to create a plasma having an electron density of at least about 1 e12 cm -3 and containing ambient electrons having an average temperature greater than about 1 eV. The substrate surface is oxidized with energetic particles, comprising primarily atomic oxygen, created in the plasma to form an oxide film of substantially uniform thickness. The oxidation of the substrate takes place at a temperature below about 700° C., e.g., between about room temperature, 20° C., and about 500° C.

Patent Agency Ranking