Abstract:
A data processor has multiple sets of hardware each of which is capable of autonomously controlling a common storage and common logical control circuits to execute a program. The hardware sets are allocated priority levels and are preferentially employed for handling interrupt service requests. Any hardware set which is interrupted in processing by a higher priority input request retains its processing status and resumes processing when control of the common elements is returned to it. Apparatus is included for addressing the set associated with a different priority level than the current level so that this different level can be preempted for another task. The presence of an interrupted program in the preempted level can be detected and its critical status stored for restoration after completion of the preempting program.
Abstract:
System mode controls for obtaining limited addressability for supervisor programming operations without disturbing a user address key currently contained in a user key register (UKR).
Abstract:
Grooves are formed in a CMP pad by positioning the pad on a supporting surface with a working surface of the pad in spaced relation opposite to a router bit and at least one projecting stop member adjacent to the router bit, an outer end portion of the bit projecting beyond the stop. When the bit is rotated, relative axial movement between the bit and the pad causes the outer end portion of the bit to cut an initial recess in the pad. Relative lateral movement between the rotating bit and the pad then forms a groove which extends laterally away from the recess and has a depth substantially the same as that of the recess. The depths of the initial recess and the groove are limited by applying a vacuum to the working surface of the pad to keep it in contact with the stop member(s). Different lateral movements between the bit and the pad are used to form a variety of groove patterns, the depths of which are precisely controlled by the stop member(s). The grooves may be formed in the polishing surface and/or the rear opposite surface of the pad and passages may be provided for interconnecting the rear grooves with the polishing surface or the front grooves.
Abstract:
A data processor has multiple sets of hardware each of which is capable of autonomously controlling a common storage and common logical control circuits to execute a program. The hardware sets are allocated priority levels and are preferentially employed for handling interrupt service requests. Any hardware set which is interrupted in processing by a higher priority input request retains its processing status and resumes processing when control of the common elements is returned to it. Apparatus is included for addressing the set associated with a different priority level than the current level so that this different level can be preempted for another task. The presence of an interrupted program in the preempted level can be detected and its critical status stored for restoration after completion of the preempting program.
Abstract:
Grooves are formed in a COD pad by positioning the pad on a supporting surface with a working surface of the pad in spaced relation opposite to a router bit and at least one projecting stop member adjacent to the router bit, an outer end portion of the bit projecting beyond the stop. When the bit is rotated, relative axial movement between the bit and the pad causes the outer end portion of the bit to cut an initial recess in the pad. Relative lateral movement between the rotating bit and the pad then forms a groove which extends laterally away from the recess and has a depth substantially the same as that of the recess. The depths of the initial recess and the groove are limited by applying a vacuum to the working surface of the pad to keep it in contact with the stop member(s). Different lateral movements between the bit and the pad are used to form a variety of groove patterns, the depths of which are precisely controlled by the stop member(s).
Abstract:
A method of accessing variable-length bit fields in the memory of an electronic data processing system irrespective of the relationship between the boundaries of addressable elements within said memory and the start and end of the bit fields comprising the operations of: setting the initial values of a base register within said system to contain a representation of a base address of an addressable element; setting the initial values of a shift register within said system to contain a representation of the offset in said memory of the beginning of a particular bit field from said base address; combining the contents of said base and offset registers in such a way as to provide a representation of the position in said memory of the first bit of said particular bit field; create a single instruction that contains a representation of the length of said particular bit field. (Machine-translation by Google Translate, not legally binding)
Abstract:
A peripheral device control unit with improved input-output coupling logic circuits for use in a data processing system including a central computer unit, a memory unit, input-output control logic circuits and a line general coupling having a plurality of lines for interconnecting the units in parallel. (Machine-translation by Google Translate, not legally binding)
Abstract:
The disclosure describes instruction operated controls for loading or storing address key values into or from one or more address key register sections in a key-register-controlled addressing system. The controls load or store one or all key register sections of an address key register (AKR) in a processor from or to a word in either a main memory or a general purpose register (GPR). Both the load or store controls are operated by the same instruction format, in which one field indicates whether the operation is to be a load or store of the designated AKR section(s). Another field designates one AKR section, or all AKR sections, which are to be loaded or stored. A still further field designates whether the operation is to be from or to main memory or a GPR. The disclosure provides circuits which operate with microcode to perform these operations.