Abstract:
Grooves (70, 76, 78, & 80-82) are formed in a CMP pad (12) by positioning the pad (12) on a supporting surface (10) with a working surface (22) of the pad (12) in spaced relation opposite to a router bit (24) and at least one projecting stop member (33) adjacent to the router bit (24), an outer end portion of the bit (24) projecting beyond the stop (33). When the bit (24) is rotated, relative axial movement between the bit (24) and the pad (12) causes the outer end portion of the bit (24) to cut an initial recess in the pad (12). Relative lateral movement between the rotating bit (24) and the pad (12) then forms a groove (70) which extends laterally away from the recess and has a depth substantially the same as that of the recess. The depths of the initial recess and the groove (70) are limited by applying a vacuum to the working surface (22) of the pad (12) to keep it in contact with the stop member(s) (33). Different lateral movements between the bit (24) and the pad (12) are used to form a variety of groove patterns (76, 78, & 80-82), the depths of which are precisely controlled by the stop member(s) (33).
Abstract:
A polishing pad having a body comprising fibers embedded in a matrix polymer formed by a reaction of polymer precursors. The fibers define interstices, and the precursors fill these interstices substantially completely before completion of the reaction. The pad may include a thin layer of free fibers at its polishing surface. A segment of at least a portion of the free fibers are embedded in the adjacent body of the polymer and fibers. The fibers may be separate, or in the form of a woven or non-woven web.
Abstract:
PROBLEM TO BE SOLVED: To provide the structure of an integrated circuit having a logic/functional device layer and an interconnection layer above it. SOLUTION: This interconnection layer has a substrate, a conductive feature 122 in the substrate, and a cap 151 which is formed only above the conductive feature. COPYRIGHT: (C)2004,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a method for forming a metallic pattern on a low-dielectric constant substrate. SOLUTION: A hard mask including a lower hard mask layer 31 and an upper hard mask layer 20 is prepared. The upper hard mask layer 20 is a sacrifice layer of about 200 Å thick, which is preferably made of high-melting-point nitride. The sacrifice layer functions as a stop layer in the following CMP metal removal process. A resist layer is used to perform patterning. A protection layer 31t is formed on a hard mask, or a non-oxidized resist strip process is used, so as to avoid the damage of oxidization to the lower hard mask layer 31. COPYRIGHT: (C)2003,JPO
Abstract:
Grooves are formed in a CMP (12) pad by positioning the pad on a supporting surface with a working surface (22) of the pad in spaced relation opposite to a router bit (24) and at least one projecting stop member (33) adjacent to the router bit, an outer end portion of the bit projecting beyond the stop. When the bit is rotated, relative axial movement between the bit and the pad causes the outer end portion of the bit to cut an initial recess in the pad. Relative lateral movement between the rotating bit and the pad then forms a groove which extends laterally away from the recess and has a depth substantially the same as that of the recess. Different lateral movements between the bit and the pad are used to form a variety of groove patterns, the depths of which are precisely controlled by the stop member(s). The grooves may be formed in the polishing surface and/or the rear opposite surface of the pad and passages may be provided for interconnecting the rear grooves with the polishing surface or the front grooves. Grooves in the polishing surface may be provided with outlets through which a polishing slurry may flow while the polishing surface is in contact with a workpiece surface.
Abstract:
A polishing pad having a body comprising fibers embedded in a matrix polymer formed by a reaction of polymer precursors. The fibers define interstices, and the precursors fill these interstices substantially completely before completion of the reaction. The pad may include a thin layer of free fibers at its polishing surface. A segment of at least a portion of the free fibers are embedded in the adjacent body of the polymer and fibers. The fibers may be separate, or in the form of a woven or non-woven web.
Abstract:
PROBLEM TO BE SOLVED: To provide a structure which reduces the dielectric constant between conductive lines by providing an air dielectric. SOLUTION: In a multilevel microelectronic integrated circuit, air comprises a permanent line level dielectric, and an ultra-low-k material constitutes a via level dielectric. In the IC structure, air is supplied to the line level after removal of a sacrificial material by clean thermal decomposition and auxiliary diffusion of byproducts through porosities. Optionally, air is also included within porosities in the via level dielectric. By incorporating air into the extension produced in the invention, intralevel and interlevel dielectric values are minimized. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a stacked type wafer polishing pad capable of changing its hardness. SOLUTION: A polishing pad assembly to be used in a chemical machinery polishing device having a polishing platen is provided. This polishing pad assembly includes a first pad disposed on the platen. The first pad is provided with a sealable enclosure having a flexible skin in which porous material is partially filled. A control mechanism is adapted to inject fluid into the enclosure, and extract fluid from the enclosure. Hardness of the first pad is changed in accordance with quantity of fluid in the enclosure. A second pad is disposed on the first pad.
Abstract:
Grooves (70, 76, 78, & 80-82) are formed in a CMP pad (12) by positionin g the pad (12) on a supporting surface (10) with a working surface (22) of the pad (12) in spaced relation opposite to a router bit (24) and at least one projecting stop member (33) adjacent to the router bit (24), an outer end portion of the bit (24) projecting beyond the stop (33). When the bit (24) i s rotated, relative axial movement between the bit (24) and the pad (12) cause s the outer end portion of the bit (24) to cut an initial recess in the pad (12). Relative lateral movement between the rotating bit (24) and the pad (1 2) then forms a groove (70) which extends laterally away from the recess and ha s a depth substantially the same as that of the recess. The depths of the initial recess and the groove (70) are limited by applying a vacuum to the working surface (22) of the pad (12) to keep it in contact with the stop member(s) (33). Different lateral movements between the bit (24) and the pad (12) are used to form a variety of groove patterns (76, 78, & 80-82), th e depths of which are precisely controlled by the stop member(s) (33).
Abstract:
Grooves are formed in a CMP pad by positioning the pad on a supporting surface with a working surface of the pad in spaced relation opposite to a router bit and at least one projecting stop member adjacent to the router bit, an outer end portion of the bit projecting beyond the stop. When the bit is rotated, relative axial movement between the bit and the pad causes the outer end portion of the bit to cut an initial recess in the pad. Relative lateral movement between the rotating bit and the pad then forms a groove which extends laterally away from the recess and has a depth substantially the same as that of the recess. The depths of the initial recess and the groove are limited by applying a vacuum to the working surface of the pad to keep it in contact with the stop member(s). Different lateral movements between the bit and the pad are used to form a variety of groove patterns, the depths of which are precisely controlled by the stop member(s). The grooves may be formed in the polishing surface and/or the rear opposite surface of the pad and passages may be provided for interconnecting the rear grooves with the polishing surface or the front grooves.