1.
    发明专利
    未知

    公开(公告)号:AT232313T

    公开(公告)日:2003-02-15

    申请号:AT99973434

    申请日:1999-11-30

    Applicant: IBM

    Abstract: A non-uniform memory access (NUMA) computer system includes at least two nodes coupled by a node interconnect, where at least one of the nodes includes a processor for servicing interrupts. The nodes are partitioned into external interrupt domains so that an external interrupt is always presented to a processor within the external interrupt domain in which the interrupt occurs. Although each external interrupt domain typically includes only a single node, interrupt channeling or interrupt funneling may be implemented to route external interrupts across node boundaries for presentation to a processor. Once presented to a processor, interrupt handling software may then execute on any processor to service the external interrupt. Servicing external interrupts is expedited by reducing the size of the interrupt handler polling chain as compared to prior art methods. In addition to external interrupts, the interrupt architecture of the present invention supports inter-processor interrupts (IPIs) by which any processor may interrupt itself or one or more other processors in the NUMA computer system. IPIs are triggered by writing to memory mapped registers in global system memory, which facilitates the transmission of IPIs across node boundaries and permits multicast IPIs to be triggered simply by transmitting one write transaction to each node containing a processor to be interrupted. The interrupt hardware within each node is also distributed for scalability, with the hardware components communicating via interrupt transactions conveyed across shared communication paths.

    Interrupt architecture for a non-uniform memory access (numa) data processing system

    公开(公告)号:AU1397600A

    公开(公告)日:2000-07-03

    申请号:AU1397600

    申请日:1999-11-30

    Applicant: IBM

    Abstract: A non-uniform memory access (NUMA) computer system includes at least two nodes coupled by a node interconnect, where at least one of the nodes includes a processor for servicing interrupts. The nodes are partitioned into external interrupt domains so that an external interrupt is always presented to a processor within the external interrupt domain in which the interrupt occurs. Although each external interrupt domain typically includes only a single node, interrupt channeling or interrupt funneling may be implemented to route external interrupts across node boundaries for presentation to a processor. Once presented to a processor, interrupt handling software may then execute on any processor to service the external interrupt. Servicing external interrupts is expedited by reducing the size of the interrupt handler polling chain as compared to prior art methods. In addition to external interrupts, the interrupt architecture of the present invention supports inter-processor interrupts (IPIs) by which any processor may interrupt itself or one or more other processors in the NUMA computer system. IPIs are triggered by writing to memory mapped registers in global system memory, which facilitates the transmission of IPIs across node boundaries and permits multicast IPIs to be triggered simply by transmitting one write transaction to each node containing a processor to be interrupted. The interrupt hardware within each node is also distributed for scalability, with the hardware components communicating via interrupt transactions conveyed across shared communication paths.

    INTERRUPT ARCHITECTURE FOR A NON-UNIFORM MEMORY ACCESS (NUMA) DATA PROCESSING SYSTEM

    公开(公告)号:CA2349662C

    公开(公告)日:2003-02-18

    申请号:CA2349662

    申请日:1999-11-30

    Applicant: IBM

    Abstract: A non-uniform memory access (NUMA) computer system includes at least two nod es coupled by a node interconnect, where at least one of the nodes includes a processor for servicing interrupts. The nodes are partitioned into external interrupt domains so that an external interrupt is always presented to a processor within the external interrupt domain in which the interrupt occurs . Although each external interrupt domain typically includes only a single nod e, interrupt channelling or interrupt funnelling may be implemented to route external interrupts across node boundaries for presentation to a processor. Once presented to a processor, interrupt handling software may then execute on any processor to service the external interrupt. Servicing external interrup ts is expedited by reducing the size of the interrupt handler polling chain as compared to prior art methods. In addition to external interrupts, the interrupt architecture of the present invention supports inter-processor interrupts (IPIs) by which any processor may interrupt itself or one or more other processors in the NUMA computer system.

    INTERRUPT ARCHITECTURE FOR A NON-UNIFORM MEMORY ACCESS (NUMA) DATA PROCESSING SYSTEM

    公开(公告)号:CA2349662A1

    公开(公告)日:2000-06-22

    申请号:CA2349662

    申请日:1999-11-30

    Applicant: IBM

    Abstract: A non-uniform memory access (NUMA) computer system includes at least two nod es coupled by a node interconnect, where at least one of the nodes includes a processor for servicing interrupts. The nodes are partitioned into external interrupt domains so that an external interrupt is always presented to a processor within the external interrupt domain in which the interrupt occurs . Although each external interrupt domain typically includes only a single nod e, interrupt channelling or interrupt funnelling may be implemented to route external interrupts across node boundaries for presentation to a processor. Once presented to a processor, interrupt handling software may then execute on any processor to service the external interrupt. Servicing external interrup ts is expedited by reducing the size of the interrupt handler polling chain as compared to prior art methods. In addition to external interrupts, the interrupt architecture of the present invention supports inter-processor interrupts (IPIs) by which any processor may interrupt itself or one or more other processors in the NUMA computer system.

    INTERRUPT ARCHITECTURE FOR A NON-UNIFORM MEMORY ACCESS (NUMA) DATA PROCESSING SYSTEM

    公开(公告)号:PL348253A1

    公开(公告)日:2002-05-20

    申请号:PL34825399

    申请日:1999-11-30

    Applicant: IBM

    Abstract: A non-uniform memory access (NUMA) computer system includes at least two nodes coupled by a node interconnect, where at least one of the nodes includes a processor for servicing interrupts. The nodes are partitioned into external interrupt domains so that an external interrupt is always presented to a processor within the external interrupt domain in which the interrupt occurs. Although each external interrupt domain typically includes only a single node, interrupt channeling or interrupt funneling may be implemented to route external interrupts across node boundaries for presentation to a processor. Once presented to a processor, interrupt handling software may then execute on any processor to service the external interrupt. Servicing external interrupts is expedited by reducing the size of the interrupt handler polling chain as compared to prior art methods. In addition to external interrupts, the interrupt architecture of the present invention supports inter-processor interrupts (IPIs) by which any processor may interrupt itself or one or more other processors in the NUMA computer system. IPIs are triggered by writing to memory mapped registers in global system memory, which facilitates the transmission of IPIs across node boundaries and permits multicast IPIs to be triggered simply by transmitting one write transaction to each node containing a processor to be interrupted. The interrupt hardware within each node is also distributed for scalability, with the hardware components communicating via interrupt transactions conveyed across shared communication paths.

    INTERRUPT ARCHITECTURE FOR A NON-UNIFORM MEMORY ACCESS (NUMA) DATA PROCESSING SYSTEM

    公开(公告)号:HU0104536A2

    公开(公告)日:2002-03-28

    申请号:HU0104536

    申请日:1999-11-30

    Applicant: IBM

    Abstract: A non-uniform memory access (NUMA) computer system includes at least two nodes coupled by a node interconnect, where at least one of the nodes includes a processor for servicing interrupts. The nodes are partitioned into external interrupt domains so that an external interrupt is always presented to a processor within the external interrupt domain in which the interrupt occurs. Although each external interrupt domain typically includes only a single node, interrupt channeling or interrupt funneling may be implemented to route external interrupts across node boundaries for presentation to a processor. Once presented to a processor, interrupt handling software may then execute on any processor to service the external interrupt. Servicing external interrupts is expedited by reducing the size of the interrupt handler polling chain as compared to prior art methods. In addition to external interrupts, the interrupt architecture of the present invention supports inter-processor interrupts (IPIs) by which any processor may interrupt itself or one or more other processors in the NUMA computer system. IPIs are triggered by writing to memory mapped registers in global system memory, which facilitates the transmission of IPIs across node boundaries and permits multicast IPIs to be triggered simply by transmitting one write transaction to each node containing a processor to be interrupted. The interrupt hardware within each node is also distributed for scalability, with the hardware components communicating via interrupt transactions conveyed across shared communication paths.

    Interrupt architecture for a non-uniform memory access (NUMA) data processing system

    公开(公告)号:CZ20012154A3

    公开(公告)日:2001-09-12

    申请号:CZ20012154

    申请日:1999-11-30

    Applicant: IBM

    Abstract: A non-uniform memory access (NUMA) computer system includes at least two nodes coupled by a node interconnect, where at least one of the nodes includes a processor for servicing interrupts. The nodes are partitioned into external interrupt domains so that an external interrupt is always presented to a processor within the external interrupt domain in which the interrupt occurs. Although each external interrupt domain typically includes only a single node, interrupt channeling or interrupt funneling may be implemented to route external interrupts across node boundaries for presentation to a processor. Once presented to a processor, interrupt handling software may then execute on any processor to service the external interrupt. Servicing external interrupts is expedited by reducing the size of the interrupt handler polling chain as compared to prior art methods. In addition to external interrupts, the interrupt architecture of the present invention supports inter-processor interrupts (IPIs) by which any processor may interrupt itself or one or more other processors in the NUMA computer system. IPIs are triggered by writing to memory mapped registers in global system memory, which facilitates the transmission of IPIs across node boundaries and permits multicast IPIs to be triggered simply by transmitting one write transaction to each node containing a processor to be interrupted. The interrupt hardware within each node is also distributed for scalability, with the hardware components communicating via interrupt transactions conveyed across shared communication paths.

Patent Agency Ranking