Extending range of lithographic simulation integral
    2.
    发明专利
    Extending range of lithographic simulation integral 有权
    扩展的平面模拟集成范围

    公开(公告)号:JP2005128557A

    公开(公告)日:2005-05-19

    申请号:JP2004310633

    申请日:2004-10-26

    CPC classification number: G03F1/36 G03F1/70

    Abstract: PROBLEM TO BE SOLVED: To provide a method for calculating intermediate-range and long-range image contributions from mask polygons.
    SOLUTION: An algorithm is introduced having application to optical proximity correction in optical lithography. A finite integral for each sector of a polygon replaces an infinite integral. A finite integral is achieved by integrating over two triangles instead of integrating on full sectors. An analytical approach is presented for a power law kernel to reduce the numerical integration of a sector to an analytical expression evaluation. The mask polygon is divided into a plurality of regions to calculate effects of interaction such as intermediate-range and long-range effects, by truncating the mask instead of truncating the kernel function.
    COPYRIGHT: (C)2005,JPO&NCIPI

    Abstract translation: 要解决的问题:提供一种用于从掩模多边形计算中间范围和远程图像贡献的方法。 解决方案:引入了一种应用于光学光刻中的光学邻近校正的算法。 多边形的每个扇区的有限积分代替无限积分。 通过对两个三角形进行积分而不是整个扇区进行积分来实现有限积分。 针对幂律内核提出了一种分析方法,以减少一个部门与分析表达式评估的数值整合。 掩模多边形被划分成多个区域,以通过截断掩码而不是截断核函数来计算诸如中间范围和长距离效应的交互的效果。 版权所有(C)2005,JPO&NCIPI

    Simultaneous computation of a plurality of points on one or more cut lines
    3.
    发明专利
    Simultaneous computation of a plurality of points on one or more cut lines 有权
    同时计算一个或多个切割线上的多个点

    公开(公告)号:JP2005129958A

    公开(公告)日:2005-05-19

    申请号:JP2004309629

    申请日:2004-10-25

    CPC classification number: G03F1/36

    Abstract: PROBLEM TO BE SOLVED: To provide a method and a program storage device in which model base optical proximity collection is performed, by providing a region of interest (ROI) having interaction distance and tracing at least one polygon in the ROI.
    SOLUTION: A cut line or a plurality of cut lines of sample points showing a set of apexes are formed within the ROI so as to be traversed at least one side edge of polygon. By determining an angular position, and a first part and a second part of the cut line in opposing side surfaces which intersect between the cut line and the side edge of the polygon, and then, based on the angular position and the first part and the second part of the cut line extending the original ROI over the interaction distance, new ROI is formed. By this form, various new ROI is formed in various different directions. Finally, optical proximity can be corrected.
    COPYRIGHT: (C)2005,JPO&NCIPI

    Abstract translation: 要解决的问题:提供一种方法和程序存储装置,其中通过提供具有交互距离的感兴趣区域(ROI)和跟踪ROI中的至少一个多边形来执行模型基础光学邻近度收集。 解决方案:在ROI内形成切割线或多个示出点的切割线的切割线,以便遍历多边形的至少一个侧边缘。 通过确定角位置,以及在切割线和多边形的侧边之间相交的相对侧表面中的切割线的第一部分和第二部分,然后基于角位置和第一部分以及 切割线的第二部分通过交互距离延伸原始ROI,形成新的ROI。 通过这种形式,在各种不同的方向上形成各种新的ROI。 最后,可以校正光学接近度。 版权所有(C)2005,JPO&NCIPI

    Fast model-based optical proximity correction
    6.
    发明专利
    Fast model-based optical proximity correction 有权
    基于快速模型的光学近似校正

    公开(公告)号:JP2005234571A

    公开(公告)日:2005-09-02

    申请号:JP2005039330

    申请日:2005-02-16

    CPC classification number: G03F7/705 G03F1/36 G03F7/70441

    Abstract: PROBLEM TO BE SOLVED: To provide a fast and high-performance projection optics simulation method and system with a non-scalar (i.e. "non-Hopkins") effect taken into account. SOLUTION: A generalized bilinear kernel independent of a mask transmission function is formed to include various influences, and the kernel is processed by decomposition to compute an image including a non-scalar effect. Dominant eigenfunctions of the generalized bilinear kernel can be used to previously compute a convolution with possible polygon sectors. Then a mask transmission function can be decomposed into polygon sectors, and a weighted pre-image may be formed from a coherent sum of the pre-computed convolution for appropriate mask polygon sectors. The image at a point may be formed from the incoherent sum of the weighted pre-images over all of the dominant eigenfunctions of the generalized bilinear kernel. The resulting image can be used to perform MBOPC (model-based optical proximity correction). COPYRIGHT: (C)2005,JPO&NCIPI

    Abstract translation: 要解决的问题:提供考虑到非标量(即“非霍普金斯”)效应的快速和高性能的投影光学模拟方法和系统。 解决方案:形成独立于掩模传输功能的广义双线性内核以包含各种影响,并且通过分解处理内核以计算包括非标量效应的图像。 广义双线性核的主要本征函数可用于预先计算可能的多边形扇区的卷积。 然后,掩模传输功能可以被分解成多边形扇区,并且可以从针对适当的屏蔽多边形扇区的预先计算的卷积的相干和形成加权的预先图像。 一点上的图像可以由广义双线性核的所有主要特征函数上的加权预图像的非相干和形成。 所得到的图像可用于执行MBOPC(基于模型的光学邻近校正)。 版权所有(C)2005,JPO&NCIPI

    Renesting interaction map into design for efficient long range calculation
    7.
    发明专利
    Renesting interaction map into design for efficient long range calculation 有权
    将交互地图重新设计成有效的长距离计算

    公开(公告)号:JP2005128553A

    公开(公告)日:2005-05-19

    申请号:JP2004309697

    申请日:2004-10-25

    CPC classification number: G03F1/36 G03F1/68 G06F17/5068

    Abstract: PROBLEM TO BE SOLVED: To provide a method for performing model-based photolithography correction by partitioning a cell array layout having a plurality of polygons into a plurality of cells covering the layout, and to provide a program storage device.
    SOLUTION: The layout is representative of a desired design data hierarchy. A density map is generated corresponding to interactions between the polygons and the plurality of cells, and then the densities within each cell are convolved. An interaction map is formed by using the convolved densities, followed by truncating the interaction map to form a map of truncated cells. Substantially identical groupings of the truncated cells are segregated respectively into differing ones of a plurality of buckets. Each bucket contains a single set of identical groupings of truncated cells. A hierarchal arrangement is generated using the buckets, and the desired design data hierarchy is performed by using the hierarchal arrangement to ultimately correct for photolithography.
    COPYRIGHT: (C)2005,JPO&NCIPI

    Abstract translation: 要解决的问题:提供一种通过将具有多个多边形的单元阵列布局分割成覆盖布局的多个单元来执行基于模型的光刻校正的方法,并且提供程序存储装置。

    解决方案:布局代表所需的设计数据层次结构。 生成对应于多边形与多个单元之间的相互作用的密度图,然后卷积每个单元内的密度。 通过使用卷积密度形成交互图,随后截断交互图以形成截断单元格的图。 截短的细胞的基本相同的分组分别分离成多个桶中的不同的桶。 每个桶包含一组相同的截断单元组。 使用桶来生成层级布置,并且通过使用层级布置来执行期望的设计数据层次结构以最终校正光刻。 版权所有(C)2005,JPO&NCIPI

    PRINTABILITY VERIFICATION BY PROGRESSIVE MODELING ACCURACY
    8.
    发明申请
    PRINTABILITY VERIFICATION BY PROGRESSIVE MODELING ACCURACY 审中-公开
    通过逐步建模准确性进行可打印性验证

    公开(公告)号:WO2008057996A3

    公开(公告)日:2008-07-10

    申请号:PCT/US2007083441

    申请日:2007-11-02

    CPC classification number: G03F1/36

    Abstract: A fast method of verifying a lithographic mask design is provided wherein catastrophic errors (432) are identified by iteratively simulating and verifying images for the mask layout using progressively more accurate image models (411), including optical and resist models. Progressively accurate optical models include SOCS kernels that provide successively less influence. Corresponding resist models are constructed that may include only SOCS kernel terms corresponding to the optical model, or may include image trait terms of varying influence ranges. Errors associated with excessive light, such as bridging, side- lobe or SRAF printing errors, are preferably identified with bright field simulations, while errors associated with insufficient light, such as necking or line-end shortening overlay errors, are preferably identified with dark field simulations.

    Abstract translation: 提供了验证光刻掩模设计的快速方法,其中通过使用包括光学和抗蚀剂模型的逐渐更准确的图像模型(411)迭代模拟和验证掩模布局的图像来识别灾难性错误(432)。 逐渐精确的光学模型包括提供连续影响较小的SOCS内核。 构建对应的抗蚀剂模型,其可以仅包括对应于光学模型的SOCS内核项,或者可以包括不同影响范围的图像特征项。 与过量光相关的错误,例如桥接,旁瓣或SRAF打印错误,优选地用明场模拟来识别,而与光线不足有关的错误例如颈缩或线端缩短覆盖错误优选地用暗场识别 模拟。

    9.
    发明专利
    未知

    公开(公告)号:AT519169T

    公开(公告)日:2011-08-15

    申请号:AT07844831

    申请日:2007-11-02

    Applicant: IBM

    Abstract: A fast method of verifying a lithographic mask design is provided wherein catastrophic errors are identified by iteratively simulating and verifying images for the mask layout using progressively more accurate image models, including optical and resist models. Progressively accurate optical models include SOCS kernels that provide successively less influence. Corresponding resist models are constructed that may include only SOCS kernel terms corresponding to the optical model, or may include image trait terms of varying influence ranges. Errors associated with excessive light, such as bridging, side-lobe or SRAF printing errors, are preferably identified with bright field simulations, while errors associated with insufficient light, such as necking or line-end shortening overlay errors, are preferably identified with dark field simulations.

Patent Agency Ranking