Abstract:
A method of evaluating process effects of multiple exposure photolithographic processes by first determining a set of expected images for each exposure step or process of the multiple exposure process individually (SET1, SET2) and then obtaining a composite set of images (FINALSET) by sequentially perturbing images from a first or previous exposure step (SET1) by weighted images from the subsequent exposure step (SET2). Preferably, the expected images are determined by simulation in the form of normalized aerial images over a range of defocus for each exposure step, and the weighting factor used is the dose-ratio of the subsequent exposure dose to the prior step exposure dose. The resulting composite set of images may be used to evaluate multiple exposure processes, for example, to provide an estimate of yield for a given budget of dose and focus errors, or alternatively, to provide specifications for tool error budgets required to obtain a target yield.
Abstract:
An opening in a substrate is formed, e.g., using optical lithography, with the opening having sidewalls whose cross section is given by segments that are contoured and convex. The cross section of the opening may be given by overlapping circular regions, for example. The sidewalls adjoin at various points, where they define protrusions. A layer of polymer including a block copolymer is applied over the opening and the substrate, and allowed to self-assemble. Discrete, segregated domains form in the opening, which are removed to form holes, which can be transferred into the underlying substrate. The positions of these domains and their corresponding holes are directed to predetermined positions by the sidewalls and their associated protrusions. The distances separating these holes may be greater or less than what they would be if the block copolymer (and any additives) were to self-assemble in the absence of any sidewalls.
Abstract:
PROBLEM TO BE SOLVED: To provide a method and a system for exposing a resist layer with regions of photosensitivity to an image in a lithographic process using a high numerical aperture imaging tool. SOLUTION: There is employed a substrate having thereover a layer reflective to the imaging tool radiation and a portion of the radiation containing an aerial image passes through the resist layer, and reflects back to the resist layer. The reflected radiation forms an interference pattern in the resist layer of the projected aerial image through the resist layer thickness. The thickness and location of the resist layer region of photosensitivity with respect to the reflective layer are selected to include from within the interference pattern higher contrast portions of the interference pattern in the direction of the resist thickness, to exclude lower contrast portions of the interference pattern in the resist thickness direction from the resist layer region of photosensitivity, and to improve contrast of the aerial image in the resist layer region of photosensitivity. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
PROBLEM TO BE SOLVED: To provide a method and a program storage device in which model base optical proximity collection is performed, by providing a region of interest (ROI) having interaction distance and tracing at least one polygon in the ROI. SOLUTION: A cut line or a plurality of cut lines of sample points showing a set of apexes are formed within the ROI so as to be traversed at least one side edge of polygon. By determining an angular position, and a first part and a second part of the cut line in opposing side surfaces which intersect between the cut line and the side edge of the polygon, and then, based on the angular position and the first part and the second part of the cut line extending the original ROI over the interaction distance, new ROI is formed. By this form, various new ROI is formed in various different directions. Finally, optical proximity can be corrected. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a method for performing model-based photolithography correction by partitioning a cell array layout having a plurality of polygons into a plurality of cells covering the layout, and to provide a program storage device. SOLUTION: The layout is representative of a desired design data hierarchy. A density map is generated corresponding to interactions between the polygons and the plurality of cells, and then the densities within each cell are convolved. An interaction map is formed by using the convolved densities, followed by truncating the interaction map to form a map of truncated cells. Substantially identical groupings of the truncated cells are segregated respectively into differing ones of a plurality of buckets. Each bucket contains a single set of identical groupings of truncated cells. A hierarchal arrangement is generated using the buckets, and the desired design data hierarchy is performed by using the hierarchal arrangement to ultimately correct for photolithography. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
A fast method of verifying a lithographic mask design is provided wherein catastrophic errors (432) are identified by iteratively simulating and verifying images for the mask layout using progressively more accurate image models (411), including optical and resist models. Progressively accurate optical models include SOCS kernels that provide successively less influence. Corresponding resist models are constructed that may include only SOCS kernel terms corresponding to the optical model, or may include image trait terms of varying influence ranges. Errors associated with excessive light, such as bridging, side- lobe or SRAF printing errors, are preferably identified with bright field simulations, while errors associated with insufficient light, such as necking or line-end shortening overlay errors, are preferably identified with dark field simulations.
Abstract:
PROBLEM TO BE SOLVED: To provide a method for carrying out model-based optical proximity correction by disposing a mask matrix having a region of interest (ROI) and locating a plurality of points of interest within the mask matrix, and to provide a program storage device for executing the above method. SOLUTION: A first polygon 200 having a plurality of vertices representative of the located points of interest is computed, followed by determining a spatial relationship between the vertices and the ROI 100. The vertices of the first polygon are pinned to boundaries of and within the ROI to form a second polygon 300 on the ROI. This processing is repeated for all vertices of the first polygon to collapse the second polygon on the ROI. The collapsed second polygon is used to correct for optical proximity. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a method for computing a phase map within an optical proximity correction simulation kernel. SOLUTION: A first method utilizes simulated wavefront information from randomly generated data. A second method uses measured data from optical tools. A phase map is created by analytically embedding a randomly generated two-dimensional array comprising complex numbers of wavefront information, and performing an inverse Fourier transform on the resultant array. A filtering function requires the amplitude of each element of the array to be multiplied by a Gaussian function. A power law is then applied to the array. The elements of the array are shuffled, and converted from a phasor form to a real/imaginary form. A two-dimensional fast Fourier transform is applied. The array is then unshuffled and converted back to the phasor form. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To prevent the formation of air bubbles and reduce contamination in immersion lithography. SOLUTION: This device comprises a wafer chuck assembly 200 having a wafer chuck 202 constituted to hold a semiconductor wafer 104 on the supporting face of itself. This wafer chuck 202 has a gap 108 inside, and this gap 108 is located adjacent to the outer edge of the wafer 104. This gap 104 contains an immersion lithography liquid of a certain volume inside. A liquid circulation path is formed in the wafer chuck 202 in such a manner as to facilitate the radially outward transfer of the immersion lithography liquid in the gap, and thereby maintain the meniscus of the immersion lithography liquid at a selected height to the upper surface of the semiconductor wafer 104. COPYRIGHT: (C)2007,JPO&INPIT