Abstract:
A process for fabricating a device including the step of forming a structure for facilitating the passivation of surface states is disclosed. The structure comprises a hydrogen-rich (H-R) silicon nitride layer formed as part of the device structure. The H-R layer, which is formed by plasma-enhanced chemical vapor deposition, comprises hydrogen in an amount greater than that of conventional PLCVD nitride layers.
Abstract:
PROBLEM TO BE SOLVED: To provide an improved method for forming a metallic silicide conductor in an integrated circuit. SOLUTION: A porous barrier is formed to prevent the thermal movement of silicon by enriching the grain boundary of a polysilicon layer 25 with nitrogen without forming an individual barrier layer. A reduction in the movement of the silicon prevents the agglomeration of the silicon in a metallic silicide layer formed on a policide gate/interconnection structure. The aggromelation of the silicon is a precedent advance phenomenon of a polycide inversion and hence effectively eliminates the polycide inversion passing through a lower oxide and damaging a device.
Abstract:
FI9-89-005 METHODS AND APPARATUS FOR CONTAMINATION CONTROL IN PLASMA PROCESSING Contamination levels in plasma processes are reduced during plasma processing, by prevention of formation of particles, by preventing entry of particles externally introduced or by removing particles spontaneously formed from chemical and/or mechanical sources. Some techniques for prevention of formation of particles include interruption of the plasma by pulsing the source of plasma energy periodically, or application of energy to provide mechanical agitation such as mechanical shockwaves, acoustic stress, ultrasonic stress, vibrational stress, thermal stress, and pressure stress. Following a period of applied stress, a tool is pumped out (if a plasma is used, the glow is first discontinued), vented, opened and flaked or particulate material is cleaned from the lower electrode and other surfaces. A burst of filtered air or nitrogen, or a vacuum cleaner is used for removal of deposition debris while the vented tool is open. Following this procedure, the tool is then be used for product runs. Alternatively, improvement of semiconductor process yields can be achieved by addition of reagents to getter chemical precursors of contamination particulates and by filtration of particulates from feedgas before plasma processing. The efficiency and endpoint for the applied stress are determined, by laser light scattering, using a pulsed or continuous laser source, e.g. a HeNe laser.
Abstract:
A "porous barrier" is formed without formation of a discrete barrier layer by enriching grain boundaries of a body of polysilicon with nitrogen to inhibit thermal mobility of silicon species therealong. In a polycide gate/interconnect structure, the reduced mobility of silicon suppresses agglomeration of silicon in a metal silicide layer formed thereon. Since silicon agglomeration is a precursor of a polycide inversion phenomenon, polycide inversion which can pierce an underlying oxide and cause device failure is effectively avoided. The increased thermal stability of polycide structures and other structures including a body of polysilicon thus increases the heat budget that can be withstood by the structure and increases the manufacturing process window imposed by the presence of polysilicon which can be exploited in other processes such as annealing to develop a low resistance phase of refractory metal silicide included in the polycide structure, drive-in annealing for formation of source/drain regions of field effect transistors and the like.
Abstract:
A "porous barrier" is formed without formation of a discrete barrier layer by enriching grain boundaries of a body of polysilicon with nitrogen to inhibit thermal mobility of silicon species therealong. In a polycide gate/interconnect structure, the reduced mobility of silicon suppresses agglomeration of silicon in a metal silicide layer formed thereon. Since silicon agglomeration is a precursor of a polycide inversion phenomenon, polycide inversion which can pierce an underlying oxide and cause device failure is effectively avoided. The increased thermal stability of polycide structures and other structures including a body of polysilicon thus increases the heat budget that can be withstood by the structure and increases the manufacturing process window imposed by the presence of polysilicon which can be exploited in other processes such as annealing to develop a low resistance phase of refractory metal silicide included in the polycide structure, drive-in annealing for formation of source/drain regions of field effect transistors and the like.