FIELD EFFECT TRANSISTOR HAVING IMPROVED THRESHOLD STABILITY

    公开(公告)号:CA1063251A

    公开(公告)日:1979-09-25

    申请号:CA312408

    申请日:1978-09-29

    Applicant: IBM

    Abstract: FIELD EFFECT TRANSISTOR HAVING IMPROVED THRESHOLD STABILITY An improved field effect transistor device in a monocrystalline semiconductor body provided with source and drain regions and a gate electrode disposed over the channel between the source and drain regions wherein at least the drain region is formed of a first region where the impurity concentration increases with depth with the peak concentration being spaced inwardly from the major surface, and a second region located within the first region having a peak impurity concentration at the major surface. The drain region structure in operation promotes the current flow between the source and drain to flow deeper in the channel region and spaced from the gate dielectric layer. In the method for forming the field effect transistor, an impurity is introduced into the semiconductor body underlying at least the ultimate drain region, an epitaxial semiconductor layer deposited, and a second impurity region formed over the first region to form the drain contact. In an alternate embodiment of the method for forming a field effect transistor, a first ion implantation is formed in the drain region, such that the peak impurity concentration is located well within the body spaced from the surface thereof, and a second ion implantation, or diffusion, performed forming the source and also the ohmic contact for the drain which is located over the first region and within the first implanted region.

    FIELD EFFECT TRANSISTOR HAVING IMPROVED THRESHOLD STABILITY

    公开(公告)号:CA1049154A

    公开(公告)日:1979-02-20

    申请号:CA261431

    申请日:1976-09-17

    Applicant: IBM

    Abstract: FIELD EFFECT TRANSISTOR HAVING IMPROVED THRESHOLD STABILITY An improved field effect transistor device in a monocrystalline semiconductor body provided with source and drain regions and a gate electrode disposed over the channel between the source and drain regions wherein at least the drain region is formed of a first region where the impurity concentration increases with depth with the peak concentration being spaced inwardly from the major surface, and a second region located within the first region having a peak impurity concentration at the major surface. The drain region structure in operation promotes the current flow between the source and drain to flow deeper in the channel region and spaced from the gate dielectric layer. In the method for forming the field effect transistor, an impurity is introduced into the semi.conductor body underlying at least the ultimate drain region, an epitaxial semiconductor layer deposited, and a second impurity region formed over the first region to form the drain contact. In an alternate embodiment of the method for forming a field effect transistor, a first ion implantation is formed in the drain region, such that the peak impurity concentration is located well within the body spaced from the surface thereof, and a second ion implantation, or diffusion, performed forming the source and also the ohmic contact for the drain which is located over the first region and within the first implanted region.

Patent Agency Ranking