Abstract:
This invention describes fabrication procedures to construct MEMS devices, specifically band-pass filter resonators, in a manner compatible with current integrated circuit processing. The final devices are constructed of single-crystal silicon, eliminating the mechanical problems associated with using polycrystalline silicon or amorphous silicon. The final MEMS device lies below the silicon surface, allowing further processing of the integrated circuit, without any protruding structures. The MEMS device is about the size of a SRAM cell, and may be easily incorporated into existing integrated circuit chips. The natural frequency of the device may be altered with post-processing or electronically controlled using voltages and currents compatible with integrated circuits.
Abstract:
PROBLEM TO BE SOLVED: To provide a communication signal mixing/filtering system that employs a capsulated microelectric mechanical system(MEMS) device, and to provide its manufacturing method. SOLUTION: The microelectric mechanical system(MEMS) of a simple single structure combines a signal mixing step and a filtering step. The MEMS device is further reduced in size and made less expensive, and has higher reliability in its structure and operation as compared with those of the existing device adopting the conventional technology.
Abstract:
An efficient converter of photon energy to heat has been devised comprising a dense array of metal whiskers grown with spacings between the whiskers of a few wavelengths of visible light. The material selected, and tungsten is exemplary of such materials, has low emissivity, but achieves significant optical absorption by trapping the light impinging on the dense array by a geometric maze effect. The characteristics of the surface are excellent for the conversion of solar energy to heat.
Abstract:
Communication signal mixing and filtering systems and methods utilizing an encapsulated micro electro- mechanical system (MEMS) device. Furthermore, disclosed is a method of fabricating a simple, unitarily constructed micro electro-mechanical system (MEMS) devic e which combines the steps of signal mixing and filtering, and which is smaller, less expensi ve and more reliable in construction and operation than existing devices currently employed in the technology.
Abstract:
PHOTON ENERGY CONVERTER An efficient converter of photon energy to heat has been devised comprising a dense array of metal whiskers grown with spacings between the whiskers of a few wavelengths of visible light. The material selected, and tungsten is exemplary of such materials, has low emissivity, but achieves significant optical absorption by trapping the light impinging on the dense array by a geometric maze effect. The characteristics of the surface are excellent for the conversion of solar energy to heat.
Abstract:
Communication signal mixing and filtering systems and methods utilizing an encapsulated micro electro-mechanical system (MEMS) device. Furthermore, disclosed is a method of fabricating a simple, unitarily constructed micro electro-mechanical system (MEMS) device which combines the steps of signal mixing and filtering, and which is smaller, less expensive and more reliable in construction and operation than existing devices currently employed in the technology.
Abstract:
Practice of this disclosure obtains a measure of the dose or fluence of implanted ions into a target for device fabrication by monitoring emitted X-rays. Illustratively, ion beams of B+, P+ or As+ have been implanted into Si over the ion energy range of 20 KeV to 2800 KeV and the data of counts of emitted X-rays has been correlated with both the solid angle intercepted by the counter and the charge intercepted by the target. In particular, the low energy soft Si(L) X-rays at 136A have been discovered for the practice of this disclosure to be very intense. The principles of this disclosure are especially applicable for very low ion doses, i.e. APPROXLESS 1012/cm2 where charge integration is not feasible; and for neutral beam implantation with currents above about 2 milliamperes. Reproducible semiconductor devices can be fabricated by practice of this disclosure, i.e., with substantially reproducible operational characteristics, e.g., bipolar and field-effect transistors with silicon integrated circuit technology.
Abstract:
Communication signal mixing and filtering systems and methods utilizing an encapsulated micro electro-mechanical system (MEMS) device. Furthermore, disclosed is a method of fabricating a simple, unitarily constructed micro electro-mechanical system (MEMS) device which combines the steps of signal mixing and filtering, and which is smaller, less expensive and more reliable in construction and operation than existing devices currently employed in the technology.
Abstract:
METHOD AND STRUCTURE FOR CONTROLLING CARRIER LIFETIME IN SEMICONDUCTOR DEVICES A method is presented for controlling the minority carrier lifetime in a semiconductor device by selectively implanting inert atoms such as helium, argon, neon, krypton, and xenon into specific regions of the device. The device structure is a bi-polar transistor having a region of inert atoms located in the collector adjacent to the base-collector junction. Another embodiment of the invention is a complementary insulated gate field effect transistor (IGFET) structure having N and P channel IGFETs with regions of implanted ions beneath the source and drain of one or both transistors, and/or annular regions projecting inwardly from the surface that surround or separate the different types of IGFETs.
Abstract:
The device structure is a bi-polar transistor having a region of inert atoms located in the collector adjacent to the base-collector junction. Another embodiment of the invention is a complementary insulated gate field effect transistor (IGFET) structure having N and P channel IGFETs with regions of implanted ions beneath the source and drain of one or both transistors, and/or annular regions projecting inwardly from the surface that surround or separate the different types of IGFETs.