Abstract:
A method in the fabrication of integrated circuits for forming small openings through electrically insulative passivating layers on semiconductor surfaces. First and second layers of different insulative material are formed on the semiconductor surface. Then, a first slot extending through the second or top layer is formed by chemical etching through an etch-resistant mask with an etchant which selectively etches the material in the top layer. The top layer is then covered with a photoresist mask having a second slot which crosses the first slot, and the structure is subjected to chemical etching through the photoresist mask with an etchant that selectively etches the material in the first or bottom layer to, thereby, form a small opening through this bottom layer which is defined by the intersecting portions of the first and second slots.
Abstract:
An integrated circuit chip carrier with multi-level metallurgy, in which the effects of the metallurgy in causing elevation irregularitiies at the various levels of the structure are minimized, is produced by a method wherein a first plurality of levels of metallization patterns respectively separated by layers of dielectric material are first formed on a planar primary layer supported on a temporary substrate having a chemical etchability different from that of the layer. The primary layer is electrically insulative with respect to said metallization patterns. Then, a supporting layer is formed on the uppermost covering layer, after which the substrate is removed with a chemical etchant which preferentially etches the substrate away from the insulative layer. Next, an opposite plurality of levels of metallization patterns are formed on the side of the insulative layer opposite to the first formed metallization patterns. These opposite metallization patterns are also respectively separated by covering layers of dielectric material.
Abstract:
A space charge limited transistor formed on a high resistivity substrate of at least 10,000 ohm-centimeter silicon of one conductivity type. One surface of the substrate is provided with spaced recessed oxide regions. The alternate spaces between the oxide regions are occupied by impurity zones of said one conductivity type. The intervening alternate spaces between the oxide regions are occupied by impurity zones of the other conductivity type. The impurity concentrations of the aforesaid impurity zones are at least several orders of magnitude higher than that of the substrate where the zones are separated from each other by the aforesaid oxide regions. The dielectric relaxation time is much larger than the carrier transit time within the substrate below and between adjacent impurity zones of the same conductivity type.
Abstract:
A space charge limited transistor formed on a high resistivity substrate of at least 10,000 ohm-centimeter silicon and of one conductivity type. One surface of the substrate is provided with an impurity zone of the other conductivity type. Spaced diffusions of said one conductivity type are made reaching through the impurity zone to the substrate. The distance separating the spaced diffused areas and the depths of the impurity and of the spaced diffused areas are determined so that a region of high resistivity substrate remains beneath the impurity zone between the spaced diffusions. The dielectric relaxation time within said region is much larger than the carrier transit time whereby space charge limited current flow is achieved upon the establishment of suitable bias conditions.
Abstract:
A method of fabricating a planar dielectrically isolated semiconductor device by depositing a surface layer of dielectric material on a major surface of a monocrystalline substrate, removing portions of the layer to define annular channels, thermally oxidizing the exposed surface areas thereby forming annular ridges of SiO2, removing portions of the dielectric layer, selectively growing an epitaxial silicon layer over the surface wherein the surfaces of the annular ridges of SiO2 and the regions of epitaxial silicon are substantially co-planar. A semiconductor integrated circuit device having a silicon epitaxial layer on a monocrystalline substrate, a network of thermally oxidized silicon regions extending through the epitaxial layer, across the epitaxial layer-substrate interface and into the silicon substrate, the network separating the epitaxial silicon layer into individual pockets, a laterally extending region of low resistivity located generally at the epitaxial layer-substrate interface embodying a first conductivity type impurity, the first type impurity distribution in the epitaxial layer such that the concentration increases with depth.
Abstract:
A METHOD FOR FABRICATING MINUTE OPENINGS IN INTEGRATED CIRCUITS A method in the fabrication of integrated circuits for forming small openings through electrically insulative passivating layers on semiconductor surfaces. First and second layers of different insulative material are formed on the semiconductor surface. Then, a first slot extending through the second or top layer is formed by chemical etching through an etch-resistant mask with an etchant which selectively etches the material in the top layer. The top layer is then covered with a photoresist mask having a second slot which crosses the first slot, and the structure is subjected to chemical etching through the photoresist mask with an etchant that selectively etches the material in the first or bottom layer to, thereby, form a small opening through this bottom layer which is defined by the intersecting portions of the first and second slots.
Abstract:
A semiconductor resistor structure for providing a high value resistance particularly adapted for space charge limited transistor applications, the resistor being fabricated in a semiconductor body having a resistivity in excess of 1 ohm cm., more preferably in semiconductor material that is nearly intrinsic. The resistor has two parallel elongated surface diffused regions in the body of an impurity similar to the background impurity of the body and having a surface concentration sufficient to provide an ohmic contact, the boundaries of said surface diffused regions defined by the interface where the impurity concentration of the diffused region is ten percent more than the impurity concentration of the background impurity of the body. In a preferred embodiment, the surface diffused regions are spaced such that the boundaries intersect with each other, and ohmic contact terminals to each of the diffused regions.
Abstract:
An integrated circuit chip carrier with multi-level metallurgy, in which the effects of the metallurgy in causing elevation irregularitiies at the various levels of the structure are minimized, is produced by a method wherein a first plurality of levels of metallization patterns respectively separated by layers of dielectric material are first formed on a planar primary layer supported on a temporary substrate having a chemical etchability different from that of the layer. The primary layer is electrically insulative with respect to said metallization patterns. Then, a supporting layer is formed on the uppermost covering layer, after which the substrate is removed with a chemical etchant which preferentially etches the substrate away from the insulative layer. Next, an opposite plurality of levels of metallization patterns are formed on the side of the insulative layer opposite to the first formed metallization patterns. These opposite metallization patterns are also respectively separated by covering layers of dielectric material.
Abstract:
1337906 Semi-conductor devices INTERNATIONAL BUSINESS MACHINES CORP 1 Nov 1972 [17 Dec 1971] 50285/72 Heading H1K A lateral bipolar transistor constituted by N + type emitter and collector regions 4, 5 and P type base region 13 shares the first-mentioned two regions with a space-charge limited transistor whose base region comprises an N- type substrate 1 adjoining the bipolar base region 13. The arrangement is such that, with increasing emitter-base forward bias, a space-charge limited current flows through the space-charge limited transistor under the control of the bipolar base region 13 before the bias reaches a sufficient level to initiate bipolar transistor action through the base region 13. The relatively high gain of the space-charge limited transistor is thus employed at low emitterbase forward biases, and the onset of bipolar action may be retarded further by entirely surrounding the N + type collector region 5 with the N- type material of the substrate 1. The electronic processes involved in the operation of the device are discussed in the Specification. A complementary structure comprising a PNP lateral bipolar transistor in parallel with and sharing the same emitter and collector regions as a PN-P space-charge limited transistor may be integrated into the same semi-conductor substrate 1 as the device shown in Fig. 1 with the addition of no further diffusion steps. The Fig. 1 device is isolated from the complementary device by an N + type guard ring. The conductivity types of the arrangement may be reversed.