Abstract:
A method for testing very large scale integrated circuit devices, most particularly Level Sensitive Scan Design (LSSD) devices, by applying differently configured sequences of pseudo-random patterns in parallel to each of the input terminals of the device under test (DUT), collecting the output responses from each of the output terminals in parallel, combining these outputs to obtain a signature (MISR = Multiple Input Signature Register) which is a predetermined function of all of the sequences of parallel outputs and comparing the test signature with a known good signature obtained by computer simulation. … The input test stimuli are further altered in a predetermined fashion as a function of the structure of the device to be tested, to individually weight the inputs in favor of more or less binary ones or zeros.
Abstract:
Methods for testing a semiconductor circuit (10) including testing the circuit and modifying a well bias (14, 18) of the circuit during testing. The methods improve the resolution of voltage-based and IDDQ testing and diagnosis by modifying well bias during testing. In addition, the methods provide more efficient stresses during stress testing. The methods apply to ICs where the semiconductor well (wells and/or substrates) are wired separately from the chip VDD and GND, allowing for external control (40) of the well potentials during test. In general, the methods rely on using the well bias to change transistor threshold voltages.
Abstract:
A method, secure cell phone and system for securely accessing an automated banking machine using such secure cell phone. The secure cell phone includes a read only memory device in combination with two linear feedback shift registers for generating a unique security transaction code, which includes a cell phone identification concatenated with two pseudo random codes. The automated banking machine is called from the cell phone. One of the pseudo random codes is input into a software emulation of the cell phone circuitry running on the automated banking machine to generate a computed pseudo random code. This computed code is concatenated the input pseudo random code and a determined cell phone identification to generate a computed transaction code. The automated banking machine is securely accessed using the secure cell phone if the computed transaction code matches the unique security transaction code.
Abstract:
A method for controlling access to data contained within a radio frequency identification (RFID) tag associated with an item includes reading the RFID tag; receiving a first value from a personal communication device associated with a purchaser of the item; creating a key using the first value received from the personal communication device and a second value associated with the item; and initially transmitting the key to both the RFID tag and the personal communication device. The RFID tag is configured to automatically program one or more electrically programmable fuse devices therein so as to prevent subsequent reading of data therein by an RFID reading device, upon receipt of a valid key initially transmitted thereto. The RFID tag is further configured to automatically program one or more additional fuse devices therein so as to restore read access to the data therein, upon receipt of a valid key subsequently transmitted thereto.
Abstract:
A method for constructing a secure Internet transaction, the method includes: receiving a user identification (userid) and user password on a client device for filling out a form generated by a secure web site; concatenating the user's Internet Protocol (IP) address with a separate password that is maintained on the secure web site that the user is authenticating to; encrypting the concatenated user IP and separate password to form an Internet Protocol password (IPPW); wherein the encrypting is carried out with a client device linear feedback shift register (LFSR) with a defined cycle count; building a transaction consisting of the IPPW, defined cycle count, and userid; transmitting the transaction and form via a network towards the secure web site; wherein in response the secure website performs the following: decrypts the IPPW, and determines if the IP portion of the decrypted IPPW is equal to the user's IP address.
Abstract:
Diverse and or multiple functions are performed in a secure manner using a secure transaction card which validates a holder of the secure transaction card in accordance with a Personal Identification Number (PIN), generates, encrypts and transmits a pair of pseudo-random number sequences through a card reader to validate the card and generates, encrypts and transmits control signals or other information corresponding to a function comprising at least one of personal identity data, passport data, equipment control signals, an entry request to a secure area, medical records or access data therefor, note pad access data and secure telephone entry data in accordance with a protocol suitable for each function. One or more such functions can thus be performed in a secure manner from a single secure transaction card and selection, if needed, can be performed by a menu included in the secure transaction card.
Abstract:
A computer random access memory is divided into first and second partitions. Each partition has its own operating system (OS). The first partition has a conventional OS and is designated for non-Internet use. The second partition is designated for secure Internet access, and has an OS specific for Internet usage. Software in the second partition cannot write or copy files in the second partition. The size of the second partition is fixed and unchangeable while said second partition is open. Each software application in the second partition is allocated a memory region that cannot be changed, thereby preventing memory overflow attacks. A secure memory is designated for temporary storage of software used in the second partition. Cyclic redundancy check (CRC) values are calculated for all files in the secure memory. To detect unauthorized file changes, CRC values are calculated for all files used in the second partition, and checked against values stored in the secure memory. The second partition can write only to a secure memory using a security arrangement such as password protection or a download memory separate from the first partition to allow files stored in the download memory to be examined by scanning and testing from the first partition prior to being stored elsewhere in the computer.
Abstract:
A method, secure cell phone and system for securely accessing an automated banking machine using such secure cell phone. The secure cell phone includes a read only memory device in combination with two linear feedback shift registers for generating a unique security transaction code, which includes a cell phone identification concatenated with two pseudo random codes. The automated banking machine is called from the cell phone. One of the pseudo random codes is input into a software emulation of the cell phone circuitry running on the automated banking machine to generate a computed pseudo random code. This computed code is concatenated the input pseudo random code and a determined cell phone identification to generate a computed transaction code. The automated banking machine is securely accessed using the secure cell phone if the computed transaction code matches the unique security transaction code.
Abstract:
A secure credit card has a pair of linear feedback shift registers (LFSRs) for generating a pair of random numbers. The LFSRs each have a unique initial state and feedback tap configuration. Hence, they each produce a unique sequence of numbers. When a financial transaction occurs, the LFSRs are operated for a random number of clock cycles, to create a pair of matched random numbers. Each card issued has unique LFSR settings, and so will produce characteristic random numbers. At a financial institution, the LFSR settings are known, so the financial institution can determine by calculation if the pair of random numbers is authentic. There are many variations, including a credit card with a secret security code for activation, and 2-way "handshake" communication with the financial institution. Also, one of the LFSRs may be replaced with a binary, or similar counter.