Abstract:
PROBLEM TO BE SOLVED: To get a trench capacitor, which has buried plates in high integration density, by a simple method, by including a stage of etching a diffusion source, according to the nonexposed section of resist, and a stage of completing a trench capacitor. SOLUTION: A trench 210 is etched within a substrate 110, according to a TEOS layer 140 made by pattern. Then in order to fill up the trench 210 surely, resist is made poor in temperature stability so that the reflow of the resist may be executed at high temperature after adhesion. Next, the resist is provided with a recess as far as about 1.5 micron below the substrate by exposure and development. Then, the trench is filled up with n+ polycrystalline silicon or other proper material. Next, using reactive ion etching, the filler is lowered to about 1.2μm from the surface of the substrate. The residual part of the trench is fill up again with n+ polycrystalline silicon or other proper material, and it is slightly lowered by RIE or other proper etching method, whereupon it is completed.
Abstract:
A method of making a photolithography mask for use in creating an electrical fuse on a semiconductor structure comprises initially determining a pattern for a desired electrical fuse, with the pattern including a fuse portion of substantially constant width except for a localized narrowed region of the fuse portion at which the electrical fuse is designed to blow. The method then includes providing a photolithography mask substrate and creating on the photolithography mask substrate a fuse mask element adapted to absorb transmission of an energy beam. The fuse mask element has a first mask portion of substantially constant width corresponding to the desired electrical fuse pattern portion of substantially constant width, and a second mask portion corresponding to the localized narrowed region of the fuse portion. The second mask portion comprises either an additional mask element spaced from the first mask portion, a narrowed width portion, or a gap in the first mask portion. The second mask portion is of a configuration sufficient to create a latent image of the electrical fuse pattern, including the localized narrowed region of the fuse portion at which the electrical fuse is designed to blow, upon passing the energy beam through the photolithography mask and onto a resist layer. Preferably, the fuse portion of substantially constant width on the determined fuse pattern has a design width less than about 0.25 mu m, and wherein the localized narrowed region of the fuse portion has a design width less than the design width of the fuse portion.
Abstract:
A method of making a photolithography mask for use in creating an electrical fuse on a semiconductor structure comprises initially determining a pattern for a desired electrical fuse, with the pattern including a fuse portion of substantially constant width except for a localized narrowed region of the fuse portion at which the electrical fuse is designed to blow. The method then includes providing a photolithography mask substrate and creating on the photolithography mask substrate a fuse mask element adapted to absorb transmission of an energy beam. The fuse mask element has a first mask portion of substantially constant width corresponding to the desired electrical fuse pattern portion of substantially constant width, and a second mask portion corresponding to the localized narrowed region of the fuse portion. The second mask portion comprises either an additional mask element spaced from the first mask portion, a narrowed width portion, or a gap in the first mask portion. The second mask portion is of a configuration sufficient to create a latent image of the electrical fuse pattern, including the localized narrowed region of the fuse portion at which the electrical fuse is designed to blow, upon passing the energy beam through the photolithography mask and onto a resist layer. Preferably, the fuse portion of substantially constant width on the determined fuse pattern has a design width less than about 0.25 mu m, and wherein the localized narrowed region of the fuse portion has a design width less than the design width of the fuse portion.
Abstract:
A projected image is formed during a material substrate. A photolithographic mask is illuminated with substantially coherent light at an oblique angle of incidence with respect to a surface of the photolithographic mask. The photolithographic mask includes a substantially transparent mask substrate and one or more lines and spaces patterns formed on the mask substrate and having a periodicity P. The mask substrate includes at least one phase shifting region. At least part of the light that is transmitted through the photolithographic mask is collected using one or more projection lenses which project the portion of the transmitted light onto the material substrate. The material substrate is disposed substantially parallel with, but at a distance from, a focal plane of the projection lens system. The phase shifting region of the mask substrate and the distance from the focal plane are selected such that a substantially focused image is projected onto the material substrate that includes the lines and spaces patterned but with a periodicity P/2.