Abstract:
An integrated circuit has primary devices and redundant devices being selective substituted for the primary devices through at least one fuse. The fuse includes a first layer having at least one fuse link region, a second layer over the first layer and cavities in the second layer above the fuse link region.
Abstract:
PROBLEM TO BE SOLVED: To provide a structure and a method for forming a thermistor. SOLUTION: An isolation region is formed in a substrate including at least an upper side layer of a single crystal semiconductor. A salicide precursor layer is formed on the isolation region and the upper side layer. Then, reaction of the salicide precursor and the upper side layer is performed and a salicide which is self-aligned to the upper side layer is formed. Finally, no reaction portion of the salicide precursor is removed, while preserving the portion of the salicide precursor on the isolation region as the main body of the thermistor. In alternative method, an integrated circuit thermistor is formed from a thermistor material region in an embossed region of interlayer dielectric (ILD). COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
A semiconductor-containing heterostructure including, from bottom to top, a IH-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a HI-V compound semiconductor barrier layer, and an optional, yet preferred, IH-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The HI-V compound semiconductor buffer layer and the HI-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the pi-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
Abstract:
A semiconductor-containing heterostructure including, from bottom to top, a IH-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a HI-V compound semiconductor barrier layer, and an optional, yet preferred, IH-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The HI-V compound semiconductor buffer layer and the HI-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the pi-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
Abstract:
PROBLEM TO BE SOLVED: To provide a fuse link structure which reduces the magnitude of damage which is caused when a fuse element is blown and to provide its method. SOLUTION: This integrated circuit is provided with a main element 102. The integrated circuit is provided with a redundant element 104 which is replaced selectively with the main element 102 by at lease one fuse. The fuse contains a first layer 401 which comprises at least one fuse link region 402, contains a second layer 401 on the first layer, a gap 410 inside the second layer on the fuse link region 402, and contains a fuse window 408 in a dielectric layer 407. Since the gap 410 guides energy and a fuse material to the fuse window 408 from the fuse link region 402, it is possible to reduce damage to a circumferential structure.
Abstract:
PROBLEM TO BE SOLVED: To minimize damage to a substrate being subjected to fuse operation and to reduce the fuse pitch, by arranging a screening part where a laser fuse link is set by laser beams so that the damage of laser induction from laser beams is minimized at a region below the screening part. SOLUTION: A dynamic access memory integrated circuit has a plurality of screening parts 402, 404, 406, and 408 located on the lower side of laser fuse links 202, 204, 206, and 208. The screening parts are constituted so that a first regions located on the lower side of the screening parts can be essentially minimized when the first laser fuse links are set by laser beams. The screening part is formed by a material for reflecting nearly entire laser energy applied the screening part. A reflection material such as tungsten, molybdenum, platinum, chromium, titanium, and their alloys operates favorably.
Abstract:
A back end of the line dry etch method is disclosed. Etching of a mask oxide and temporary (sacrificial) silicon mandrel occurs following the formation of gate stacks and tungsten studs. The mask oxide is etched selectively to tungsten and silicon through the use of a polymerizing oxide etch. The silicon is etched selectively to both silicon nitride, silicon oxide, and tungsten. The process removes the silicon mandrel and associated silicon residual stringers by removing backside helium cooling, while using HBr as the single species etchant, and by adjusting the duration, the pressure, and the electrode gaps during the silicon etch process. The silicon may be undoped polysilicon, doped polysilicon, or single crystal silicon.
Abstract:
A back end of the line dry etch method is disclosed. Etching of a mask oxide and temporary (sacrificial) silicon mandrel occurs following the formation of gate stacks and tungsten studs. The mask oxide is etched selectively to tungsten and silicon through the use of a polymerizing oxide etch. The silicon is etched selectively to both silicon nitride, silicon oxide, and tungsten. The process removes the silicon mandrel and associated silicon residual stringers by removing backside helium cooling, while using HBr as the single species etchant, and by adjusting the duration, the pressure, and the electrode gaps during the silicon etch process. The silicon may be undoped polysilicon, doped polysilicon, or single crystal silicon.
Abstract:
A back end of the line dry etch method is disclosed. Etching of a mask oxide and temporary (sacrificial) silicon mandrel occurs following the formation of gate stacks and tungsten studs. The mask oxide is etched selectively to tungsten and silicon through the use of a polymerizing oxide etch. The silicon is etched selectively to both silicon nitride, silicon oxide, and tungsten. The process removes the silicon mandrel and associated silicon residual stringers by removing backside helium cooling, while using HBr as the single species etchant, and by adjusting the duration, the pressure, and the electrode gaps during the silicon etch process. The silicon may be undoped polysilicon, doped polysilicon, or single crystal silicon.