Abstract:
A semiconductor memory device (100), in accordance with the present invention, includes a substrate having a major surface including an array region (102) and a support region (104). The array region includes memory cell structures (106) having a first height above the major surface of the substrate. The support area includes dummy structures (119) formed therein having a second height above the major surface. A dielectric layer (118) is formed over the memory cell structures in the array region and the dummy structures in the support region such that a top surface (122) of the dielectric layer is substantially planar wherein topographical features are substantially eliminated on the dielectric layer across the array region and the support region.
Abstract:
A DRAM cell and method of fabrication are provided that eliminate critical photolithography fabrication steps by merging stacked capacitor formation with electrical contacts. The a single lithography step can be used to form the electrical contacts (28) because the stacked capacitors (46,48,50) are co-planar with the bit lines (36) and the stacked capacitors are located in the insulating material provided between the bit lines. Unlike conventional capacitor-over-bit line (COB) DRAM cells, this capacitor-beside-bit line DRAM cell eliminates the need to dedicate contacts to the capacitor, making it possible to achieve higher capacitance with lower global topography.
Abstract:
A semiconductor device, in accordance with the present invention, includes a doped semiconductor substrate (102) wherein the doping of the substrate has a first conductivity and a device region (110) formed near a surface of the substrate. The device region includes at least one device well. A buried well (104) is formed in the substrate below the device region. The buried well is doped with dopants having a second conductivity. A trench region (124) surrounds the device region and extends below the surface of the substrate to at least the buried well such that the device region is isolated from other portions of the substrate by the buried well and the trench region.
Abstract:
A DRAM cell and method of fabrication are provided that eliminate critical photolithography fabrication steps by merging stacked capacitor formation with electrical contacts. The a single lithography step can be used to form the electrical contacts because the stacked capacitors are co-planar with the bit lines and the stacked capacitors are located in the insulating material provided between the bit lines. Unlike conventional capacitor-over-bit line (COB) DRAM cells, this capacitor-beside-bit line DRAM cell eliminates the need to dedicate contacts to the capacitor, making it possible to achieve higher capacitance with lower global topography.
Abstract:
PROBLEM TO BE SOLVED: To maintain an appropriate height of a lower part electrode while the surface region of the lower part electrode for a stacked capacity is improved, by forming a first electrode electrically combined to a conductive access path and then forming a second electrode on a dialectics layer formed on the first electrode. SOLUTION: A tapered surface 122 in a trench 116 is formed as a conical part in the trench 116. A lower part electrode (first electrode) 124 is formed on the upper surface comprising a side wall 118 (and the tapered surface 122) by deposition of a metal layer 126, for example, such noble metal as platinum (Pt). A high dielectric constant layer 134 is formed on the metal layer 126. The metal layer 126 forms a lower part electrode of a stacked capacitor. An upper part electrode (second electrode) 136 is formed by deposition of a conductive material above the high dielectric constant layer 134 in the trench 116. The upper part electrode 136 is prefered to be formed of platinum, while such a conductive material as iridium(Ir), for example, may be used.