Abstract:
A method of minimizing RIE lag (i.e., the neutral and ion fluxes at the bottom of a deep trench (DT) created during the construction of the trench opening using a side wall film deposition)) in DRAMs having a large aspect ratio (i.e., > 30:1) is described. The method forms a passivation film to the extent necessary for preventing isotropic etching of the substrate, hence maintaining the required profile and the shape of the DT within the substrate. The RIE process described provides a partial DT etched into a substrate to achieve the predetermined depth. The passivation film is allowed to grow to a certain thickness still below the extent that it would close the opening of the deep trench. Alternatively, the passivation film is removed by a non-RIE etching process. The non-RIE process that removes the film can be wet etched with chemicals, such as hydrofluoric acid (buffered or non buffered) or, alternatively, using vapor phase and/or non-ionized chemicals, such as anhydrous hydrofluoric acid. The controlled thickness of the film allows achieving a predetermined DT depth for high aspect ratio structures
Abstract:
A DRAM cell and method of fabrication are provided that eliminate critical photolithography fabrication steps by merging stacked capacitor formation with electrical contacts. The a single lithography step can be used to form the electrical contacts (28) because the stacked capacitors (46,48,50) are co-planar with the bit lines (36) and the stacked capacitors are located in the insulating material provided between the bit lines. Unlike conventional capacitor-over-bit line (COB) DRAM cells, this capacitor-beside-bit line DRAM cell eliminates the need to dedicate contacts to the capacitor, making it possible to achieve higher capacitance with lower global topography.
Abstract:
Apparatus for etching a patterned layer of a noble metal such as platinum. The apparatus implements a process whereby exposed areas of the noble metal are first implanted with ions and are subsequently etched. Both the ion implantation step and the etching step occur sequentially in the same chamber in the presence of a plasma discharge. The apparatus uses either a dual output power supply or two distinct power supplies to sequentially supply a high power output required for the ion implantation step and a low power output required for the etching step. Multiple cycles of implantation followed by etching may be applied to achieve deep etching of thick layers. A programmed computer controls the process steps. A method of using the apparatus is also provided.
Abstract:
A DRAM cell and method of fabrication are provided that eliminate critical photolithography fabrication steps by merging stacked capacitor formation with electrical contacts. The a single lithography step can be used to form the electrical contacts because the stacked capacitors are co-planar with the bit lines and the stacked capacitors are located in the insulating material provided between the bit lines. Unlike conventional capacitor-over-bit line (COB) DRAM cells, this capacitor-beside-bit line DRAM cell eliminates the need to dedicate contacts to the capacitor, making it possible to achieve higher capacitance with lower global topography.
Abstract:
In a method of forming a microelectronic structure of a Pt/BSTO/Pt capacitor stack for use in a DRAM device, the improvement comprising substantially eliminating or preventing oxygen out-diffusion from the BSTO material layer, comprising: preparing a bottom Pt electrode formation; subjecting the bottom Pt electrode formation to an oxygen plasma treatment to form an oxygen enriched Pt layer on the bottom Pt electrode; depositing a BSTO layer on said oxygen enriched Pt layer; depositing an upper Pt electrode layer on the BSTO layer; subjecting the upper Pt electrode layer to an oxygen plasma treatment to form an oxygen incorporated Pt layer; and depositing a Pt layer on the oxygen incorporated Pt layer upper Pt elect.
Abstract:
Methods for fabricating a semiconductor device are disclosed. Parallel gate structures are formed on a substrate with spaces between the gate structures. A blanket depositing of a conductive material is performed to fill the spaces and cover the gate structures such that contact with the substrate is made by the conductive material. A mask is patterned to remain over active area regions. The mask remains over the spaces. The conductive material is removed in accordance with the mask to provide contacts formed from the conductive material which fills the spaces over the active areas. A dielectric layer is deposited over the gate structures and over the contacts. Holes down to the contacts are formed, and a conductive region is connected to the contacts through the holes.
Abstract:
Methods for fabricating a semiconductor device are disclosed. Parallel gate structures are formed on a substrate with spaces between the gate structures. A blanket depositing of a conductive material is performed to fill the spaces and cover the gate structures such that contact with the substrate is made by the conductive material. A mask is patterned to remain over active area regions. The mask remains over the spaces. The conductive material is removed in accordance with the mask to provide contacts formed from the conductive material which fills the spaces over the active areas. A dielectric layer is deposited over the gate structures and over the contacts. Holes down to the contacts are formed, and a conductive region is connected to the contacts through the holes.
Abstract:
A method for forming a transistor is formed where a gate electrode of the transistor is formed over a substrate defining a gate channel portion of the substrate. A mask is also formed over the substrate, a portion of the mask extending over a first portion of the substrate adjacent to the gate channel portion of the substrate. The mask defines a second portion of the substrate adjacent to the first portion of the substrate. An ion beam is directed toward the substrate to form a drain or a source region of said transistor adjacent to the gate channel portion of the substrate, the source or drain region including the first and second portions of the substrate. The ion beam implants the second portion of the substrate with a first implantation characteristic. The ion beam passes through the extended portion of the mask to reach the first portion to implant the first portion with a second implantation characteristic, such second implantation characteristic being different from the first implantation characteristic.
Abstract:
A method of forming on a common semiconductor body (substrate) silicon oxide layers of different thicknesses uses plasma treatment on selected portions of an original thermally grown silicon oxide layer. The plasma treated portions are completely etched away to expose a portion of the surface of the body while non-selected portions of the original silicon oxide layer are little effected by the etch. A thermally grown second layer of silicon oxide is formed with the result being that the silicon oxide layer formed in the exposed portions of the body is thinner than elsewhere. The use of dual thickness silicon oxide layers is useful with dynamic random access memories (DRAMs) as gate oxide layers of field transistors of memory cells of the DRAM typically require different electrical characteristics than transistors of support circuitry of the DRAM
Abstract:
In a process for etching poly Si gate stacks with raised STI structure where the thickness of poly Si gates at the AA and STI are different, the improvement comprising: (a) etching a gate silicide layer + a poly Si 2 layer; (b) forming a continuous poly Si passivation layer on sidewalls of the silicide and poly Si 2 layers and at the interface of the poly Si 2 layer and a poly Si 1 layer and affecting thermal oxidation to form an underlying thin Si oxide gate layer; (c) affecting a Si oxide breakthrough etch to clear the passivation layer at interface of the poly Si 2 and the poly Si 1 layers while leaving intact the passivation layer on the sidewalls of the silicide and the poly Si 2 layers; and (d) etching the poly Si 1 layer with an oxide selective process to preserve the underlying thin gate oxide and thin passivation layer at the sidewall to obtain vertical profiles of poly Si gate stacks both at the AA and the STI oxide.