Abstract:
The present invention provides a method and apparatus of acquiring and processing seismic data. One or more controllers (200) are each coupled to seismic sensors (110a-d) to form a line of data acquisition units (106a-d). A main controller (102) is coupled to a crossover line unit (104) and to a power supply. Power and data control is distributed among the main controller (102), the crossover line controller (104) and each of the plurality of data acquition units (106a-d).
Abstract:
The present invention provides a method and apparatus of acquiring and processing seismic data. One or more controllers (200) are each coupled to seismic sensors (110a-d) to form a line of data acquisition units (106a-d). A main controller (102) is coupled to a crossover line unit (104) and to a power supply. Power and data control is distributed among the main controller (102), the crossover line controller (104) and each of the plurality of data acquition units (106a-d).
Abstract:
An accelerometer (305) for measuring seismic data. The accelerometer (305) includes an integrated vent hole for use during a vacuum sealing process and a balanced metal pattern for reducing cap wafer bowing. The accelerometer (305) also includes a top cap press frame recess (405) and a bottom cap press frame recess (420) for isolating bonding pressures to specified regions of the accelerometer (305). The accelerometer (305) is vacuum-sealed and includes a balanced metal pattern (730) to prevent degradation of the performance of the accelerometer (305). A dicing process is performed on the accelerometer (305) to isolate the electrical leads of the accelerometer (305). The accelerometer (305) further includes overshock protection bumpers (720) and patterned metal electrodes to reduce stiction during the operation of the accelerometer (305).
Abstract:
An accelerometer (305) for measuring seismic data. The accelerometer (305) includes an integrated vent hole for use during a vacuum sealing process and a balanced metal pattern for reducing cap wafer bowing. The accelerometer (305) also includes a top cap press frame recess (405) and a bottom cap press frame recess (420) for isolating bonding pressures to specified regions of the accelerometer (305). The accelerometer (305) is vacuum-sealed and includes a balanced metal pattern (730) to prevent degradation of the performance of the accelerometer (305). A dicing process is performed on the accelerometer (305) to isolate the electrical leads of the accelerometer (305). The accelerometer (305) further includes overshock protection bumpers (720) and patterned metal electrodes to reduce stiction during the operation of the accelerometer (305).
Abstract:
A plurality of seismic sensors calibration method (100) includes: an assembling so that sensors are coupled with each sensor positioned with its axis of sensitivity in a different spatial direction calibration system step (105), a rotating sensors step (110), a measuring sensors output signals ste p (115), a sensor output signal processing step (120) and a storing calibratio n coefficient(s) step (125).
Abstract:
An accelerometer (305) for measuring seismic data. The accelerometer (305) includes an integrated vent hole for use during a vacuum sealing process and a balanced metal pattern for reducing cap wafer bowing. The accelerometer (305) also includes a top cap press frame recess (405) and a bottom cap press frame recess (420) for isolating bonding pressures to specified regions of the accelerometer (305). The accelerometer (305) is vacuum-sealed and includes a balanced metal pattern (730) to prevent degradation of the performance of the accelerometer (305). A dicing process is performed on the accelerometer (305) to isolate the electrical leads of the accelerometer (305). The accelerometer (305) further includes overshock protection bumpers (720) and patterned metal electrodes to reduce stiction during the operation of the accelerometer (305).
Abstract:
Method for operating and testing a sensor assembly (210). The sensor assembly (210) preferably includes accelerometers with axes of sensitivity orthogonal to each other. The method preferably includes determining sensor tilt angle, determining the position of the sensor, and synchronizing the operation of the sensor.
Abstract:
A system for acquiring environnemental information measurements. The 5 system (100) utilizes a sensor, (205) a front-end circuit, (310) a loop filter (315), a switch controller (206), and a recuced-oder loop control circuit to provide reliable data measurements while providing robust system behavior. The system further includes a sensor simulator (330) for simulating the operation of the sensor (205) and testing the operation of the front-end circuit (310) nd the loop filter (315).