Abstract:
A process for in situ electroforming a structural reinforcing layer of selected metallic material for repairing an external surface area of a degraded section of metallic workpieces, especially of tubes and tube sections, is described. Preferably, the metal layer coatings are made of fine-grained metals, metal alloys or metal matrix composites. The plating system can be used on straight tubes, tube joints to different diameter tubes or face plates, tube elbows and other complex shapes encountered in piping systems. A suitable apparatus is assembled on or near the degraded site and is sealed in place to form the plating cell. Also described is a process for plating "patches" onto degraded areas by selective plating including brush plating.
Abstract:
Sacrificial inserts for use in gas turbine engines to reduce friction and wear damage between compressor fan blades and the fan rotors are disclosed. The consumable metallic shims have low friction and reduce fretting and galling on fan blade roots and fan rotor dovetail slots thereby increasing their operating lives, as well as reduce engine noise and improve engine efficiency. The electroformed, compliant, multi-purpose shims may have variable thickness and, when positioned between the blade dovetail root and the rotor disk dovetail slot, prevent movement and slippage between air foil blades and the rotor.
Abstract:
Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness Cr coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial and hydrophobic properties.
Abstract:
In-vivo biodegradable medical implants, containing at least in part at least partially fine-grained metallic materials that are strong, tough, stiff and lightweight, are disclosed. The in-vivo biodegradable implants are used in a number of stent applications, for fracture fixation, sutures and the like. The in-vivo biodegradable medical implants enable the reduction of implant size and weight and consequently result in reducing the release of implant degradation products into the body.
Abstract:
The invention relates to a process for forming coatings or free-standing deposits of nano-crystalline metals, metal alloys or metal matrix composites. The process employs drum plating or selective plating processes involving pulse electrode-position and a non-stationary anode or cathode. Novel nano-crystalline metal matrix composites and micro components are disclosed as well. Also described is a process for forming micro-components with grain sizes below 1,000nm.
Abstract:
Durable articles applied to the body of animals containing metallic materials providing antimicrobial properties are disclosed. Articles may comprise grain-refined and/or amorphous metals, e.g., copper, cobalt, tin and zinc, or their combinations, in contact with a fluid absorbent material. Optionally the article comprises complexing agents, gelling agents, end of life indicators and the like to extend their effectiveness under various conditions and signifies depletion of their biocidally active ingredients. Articles may be leg bands, pads, bandages, band aids or wraps.
Abstract:
A novel activation/etch method is disclosed for conductive polymer substrates and conductive polymer composite substrates to achieve good adhesion to subsequently applied coatings. The method in a preferred case involves anodically polarizing conductive polymers/polymer composites in aqueous etching solutions.
Abstract:
Variable property deposit, at least partially of fine-grained metallic material, optionally containing solid particulates dispersed therein, is disclosed. The electrodeposition conditions in a single plating cell are suitably adjusted to once or repeatedly vary at least one property in the deposit direction. In one embodiment denoted multidimension grading, property variation along the length and/or width of the deposit is also provided. Variable property metallic material deposits containing at least in part a fine-grained microstructure and variable property in the deposit direction and optionally multidimensionally, provide superior overall mechanical properties compared to monolithic fine-grained (average grain size: >20 micron) or entirely amorphous metallic material deposits.
Abstract:
An apparatus and system for in-situ electropolishing and/or for in-situ electroforming a structural or functional reinforcement layer such as a sleeve of a selected metallic material on the internal surfaces of metallic tubular conduits are described. The apparatus and system can be employed on straight tubes, tube joints to different diameter tubes or face plates, tube elbows and other complex shapes encountered in piping systems. The apparatus includes components which can be independently manipulated and assembled on or near a degraded site and, after secured in place, form an electrolytic cell within the workpiece. The apparatus contains counter-electrodes which can be moved relative to the workpiece surface during the electroplating and/or electropolishing operation to provide flexibility in selecting and employing electropolishing process parameters and electroplating process parameters to design and optimize the surface roughness as well as the size, shape and properties of the electrodeposited reinforcing layer(s).
Abstract:
Metal-coated polymer articles containing structural substantially porosity-free, fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein on polymer substrates, are disclosed. The substantially porosity-free metallic coatings/layers/patches are applied to polymer or polymer composite substrates to provide, enhance or restore vacuum/pressure integrity and fluid sealing functions. Due to the excellent adhesion between the metallic coating and the polymer article satisfactory thermal cycling performance is achieved. The invention can also be employed as a repair/refurbishment technique. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, aerospace and automotive parts and other components exposed to thermal cycling and stress created by erosion and impact damage.