Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for managing state transitions of communication circuitries in wireless networks. Embodiments manage radio resource control (RRC) state transitions and/or discontinuous reception (DRX) state transitions. Other embodiments may be described and/or claimed.
Abstract:
Techniques to control paging for fixed devices are described. An apparatus may comprise a processor circuit, a device identifier component arranged for execution by the processor circuit to determine whether a device is a fixed or mobile device, and a paging component arranged for execution by the processor circuit to generate one or more control directives to modify paging parameters when the device is a fixed device. Other embodiments are described and claimed.
Abstract:
A method and system for reducing signaling overhead during radio resource control (RRC) state transitions is disclosed. The method can include a first wireless device saving a selected RRC parameter in a memory. The selected RRC parameter can be identified based on a low frequency in which the selected RRC parameter changes. The first wireless device can set an RRC resource parameter retention timer to count a retention time duration for using the selected RRC parameter saved in the memory. The first wireless device can receive a reduced RRC connection message from a second wireless device. The reduced RRC connection message excludes the selected RRC parameter. The first wireless device can use the selected RRC parameter saved in the memory for the RRC parameter excluded in the reduced RRC connection message when the RRC resource parameter retention timer is not expired. The selected RRC parameter can be used in a RRC connection protocol.
Abstract:
Briefly, in accordance with one or more embodiments, a fixed device performs a cell search to search for one or more cells on a network and determines a transmit power level to communicate with one of the cells of the network. The fixed device sets a frequency of updating the transmit power level for communication with a cell on the network, wherein the frequency of updating the transmit power level is reduced for the fixed device with respect to a mobile device.
Abstract:
Briefly, in accordance with one or more embodiments, a fixed device synchronizes with a downlink channel of a network, acquires a master information block including a last system update time; and executes cell selection without acquiring other system information if the last system update time is before the last system access time. Furthermore, the fixed device may listen only for system information block messages that it needs, and ignore other system information blocks. A bitmap may indicate which system information block messages should be listed to for fixed devices, and which may be ignored. In some embodiments, one or more system information blocks may be designated for fixed devices.
Abstract:
Briefly, in accordance with one or more embodiments, a fixed device performs a cell search to search for one or more cells on a network and determines a transmit power level to communicate with one of the cells of the network. The fixed device sets a frequency of updating the transmit power level for communication with a cell on the network, wherein the frequency of updating the transmit power level is reduced for the fixed device with respect to a mobile device.
Abstract:
Techniques are described for a device to request a new service flow for best effort (BE) category traffic to assign a priority to the new service flow. For example, a Traffic Priority parameter in a media access control (MAC) message can be used to transmit the priority level for a new BE category service flow. The MAC message can be an AAI DSA-REQ message (specified in IEEE 802.16m draft 9 (2010)). Either a base station or a mobile station can request a new service flow using the MAC message.
Abstract:
Kommunikationsvorrichtung aufweisend einen Prozessor, der dazu ausgebildet ist, auf einem Funkkanal eine Aufwärtsstrecken-Funkübertragung in einem ersten Wellenformformat von einem Endgerät zu empfangen, die die Kommunikationsvorrichtung anweist, die Aufwärtsstrecken-Funkübertragung zu einem Netzwerkzugangsknoten weiterzuleiten, und auf dem Funkkanal die Aufwärtsstrecken-Funkübertragung mit einer Präambel in einem zweiten Wellenformformat zu dem Netzwerkzugangsknoten zu übertragen, um die Aufwärtsstrecken-Funkübertragung vor Kollisionen zu schützen.
Abstract:
Generally, this disclosure provides apparatus and methods for improved signaling of User Equipment (UE) assistance information in a wireless network. The UE device may include a processing circuit configured to generate an assistance information message including a power preference indicator (PPI) and mobility state information (MSI), the PPI and the MSI associated with the UE; a signal generation module configured to generate a Medium Access Control (MAC) layer Control Element (CE) signal, the MAC CE signal including the assistance information message; and a transmitter circuit configured to transmit the MAC CE signal to an evolved Node B (eNB) of a wireless network associated with the UE, the MAC CE signal transmitted on an uplink shared channel (UL-SCH) . The assistance information message may also be generated as a Radio Resource Control (RRC) message and transmitted on an uplink dedicated control channel (UL-DCCH). Figure 1