Abstract:
PROBLEM TO BE SOLVED: To provide provisioning of an active management technology AMT in a computer system. SOLUTION: This active management technology AMT may be automatically provisioned in a client device, which may provide the secure connection between a provisioning server and the client device. The client device having the active management technology may support zero-touch provisioning and one-touch provisioning. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
The present invention is a method, apparatus, and system to generate a key hierarchy for use in an isolated execution environment of a protected platform. In order to bind secrets to particular code operating in isolated execution, a key hierarchy comprising a series of symmetric keys for a standard symmetric cipher is utilized. The protected platform includes a processor that is configured in one of a normal execution mode and an isolated execution mode. A key storage stores an initial key that is unique for the platform. A cipher key creator located in the protected platform creates the hierarchy of keys based upon the initial key. The cipher key creator creates a series of symmetric cipher keys to protect the secrets of loaded software code.
Abstract:
A technique to enable secure application and data integrity within a computer system. In one embodiment, one or more secure enclaves are established in which an application and data may be stored and executed.
Abstract:
In one embodiment, a method of remote attestation for a special mode of operation. The method comprises storing an audit log within protected memory of a platform. The audit log is a listing of data representing each of a plurality of IsoX software modules loaded into the platform. The audit log is retrieved from the protected memory in response to receiving a remote attestation request from a remotely located platform. Then, the retrieved audit log is digitally signed to produce a digital signature for transfer to the remotely located platform.
Abstract:
A technique is provided to execute isolated instructions according to an embodiment of the present invention. An execution unit executes an isolated instruction in a processor operating in a platform. The processor is configured in one of a normal execution mode and an isolated execution mode. A parameter storage containing at least one parameter to support execution of the isolated instruction when the processor is configured in the isolated execution mode.
Abstract:
A technique to enable secure application and data integrity within a computer system. In one embodiment, one or more secure enclaves are established in which an application and data may be stored and executed.
Abstract:
An access transaction generated by a processor is configured using a configuration storage containing a configuration setting. The processor has a normal execution mode and an isolated execution mode. The access transaction has access information. Access to the configuration storage is controlled. An access grant signal is generated using the configuration setting and the access information. The access grant signal indicates if the access transaction is valid.
Abstract:
The present invention is a method, apparatus, and system to generate a key hierarchy for use in an isolated execution environment of a protected platform. In order to bind secrets to particular code operating in isolated execution, a key hierarchy comprising a series of symmetric keys for a standard symmetric cipher is utilized. The protected platform includes a processor that is configured in one of a normal execution mode and an isolated execution mode. A key storage stores an initial key that is unique for the platform. A cipher key creator located in the protected platform creates the hierarchy of keys based upon the initial key. The cipher key creator creates a series of symmetric cipher keys to protect the secrets of loaded software code.
Abstract:
The present invention is a method, apparatus, and system to generate a key hierarchy for use in an isolated execution environment of a protected platform. In order to bind secrets to particular code operating in isolated execution, a key hierarchy comprising a series of symmetric keys for a standard symmetric cipher is utilized. The protected platform includes a processor that is configured in one of a normal execution mode and an isolated execution mode. A key storage stores an initial key that is unique for the platform. A cipher key creator located in the protected platform creates the hierarchy of keys based upon the initial key. The cipher key creator creates a series of symmetric cipher keys to protect the secrets of loaded software code.